Decomposition of \(\widehat{\mathfrak {sl}_2} _{,k} \ \oplus \ \widehat{\mathfrak {sl}_2} _{,1}\) Highest Weight Representations for Generic Level k and Equivalence Between Two-Dimensional CFT Models

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Leszek Hadasz, Błażej Ruba
{"title":"Decomposition of \\(\\widehat{\\mathfrak {sl}_2} _{,k} \\ \\oplus \\ \\widehat{\\mathfrak {sl}_2} _{,1}\\) Highest Weight Representations for Generic Level k and Equivalence Between Two-Dimensional CFT Models","authors":"Leszek Hadasz,&nbsp;Błażej Ruba","doi":"10.1007/s00220-025-05252-2","DOIUrl":null,"url":null,"abstract":"<div><p>We construct highest weight vectors of <span>\\(\\widehat{\\mathfrak {sl}_2}_{,k+1} \\oplus \\textsf{Vir}\\)</span> in tensor products of highest weight modules of <span>\\(\\widehat{\\mathfrak {sl}_2}_{,k}\\)</span> and <span>\\(\\widehat{\\mathfrak {sl}_2}_{,1}\\)</span>, and thus for generic weights we find the decomposition of the tensor product into irreducibles of <span>\\(\\widehat{\\mathfrak {sl}_2}_{k+1} \\oplus \\textsf{Vir}\\)</span>. The construction uses Wakimoto representations of <span>\\(\\widehat{\\mathfrak {sl}_2}_{,k}\\)</span>, but the obtained vectors can be mapped back to Verma modules. Singularities of this mapping are cancelled by a renormalization. A detailed study of “degenerations” of Wakimoto modules allowed to find the renormalization factor explicitly. The obtained result is a significant step forward in a proof of equivalence of certain two-dimensional CFT models.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05252-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We construct highest weight vectors of \(\widehat{\mathfrak {sl}_2}_{,k+1} \oplus \textsf{Vir}\) in tensor products of highest weight modules of \(\widehat{\mathfrak {sl}_2}_{,k}\) and \(\widehat{\mathfrak {sl}_2}_{,1}\), and thus for generic weights we find the decomposition of the tensor product into irreducibles of \(\widehat{\mathfrak {sl}_2}_{k+1} \oplus \textsf{Vir}\). The construction uses Wakimoto representations of \(\widehat{\mathfrak {sl}_2}_{,k}\), but the obtained vectors can be mapped back to Verma modules. Singularities of this mapping are cancelled by a renormalization. A detailed study of “degenerations” of Wakimoto modules allowed to find the renormalization factor explicitly. The obtained result is a significant step forward in a proof of equivalence of certain two-dimensional CFT models.

广义k层的最高权表示分解\(\widehat{\mathfrak {sl}_2} _{,k} \ \oplus \ \widehat{\mathfrak {sl}_2} _{,1}\)及二维CFT模型间的等价性
我们在\(\widehat{\mathfrak {sl}_2}_{,k}\)和\(\widehat{\mathfrak {sl}_2}_{,1}\)的最高权模块的张量积中构造了\(\widehat{\mathfrak {sl}_2}_{,k+1} \oplus \textsf{Vir}\)的最高权向量,因此对于一般权,我们发现张量积分解为\(\widehat{\mathfrak {sl}_2}_{k+1} \oplus \textsf{Vir}\)的不可约项。该构造使用\(\widehat{\mathfrak {sl}_2}_{,k}\)的Wakimoto表示,但获得的向量可以映射回Verma模块。该映射的奇异性通过重整化消除。对Wakimoto模的“退化”进行了详细的研究,可以明确地找到重整化因子。所得结果对证明某些二维CFT模型的等价性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信