Failure analysis of novel hybrid busbars made by hole hemming for electric vehicle applications

IF 4.4 3区 工程技术 Q1 ENGINEERING, CIVIL
B. F. A. da Silva, M. M. Kasaei, A. Akhavan-Safar, R. J. C. Carbas, E. A. S. Marques, L. F. M. da Silva
{"title":"Failure analysis of novel hybrid busbars made by hole hemming for electric vehicle applications","authors":"B. F. A. da Silva,&nbsp;M. M. Kasaei,&nbsp;A. Akhavan-Safar,&nbsp;R. J. C. Carbas,&nbsp;E. A. S. Marques,&nbsp;L. F. M. da Silva","doi":"10.1007/s43452-025-01163-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on the failure behavior of novel joints between aluminum and copper sheets produced by hole hemming, with potential applications in hybrid busbars for electric vehicle batteries. This technology involves deforming the aluminum sheet to create a mechanical interlock with the copper sheet, eliminating the need for additional elements, heat, or welding. First, the materials are characterized, and the most suitable strain hardening law is determined to model their post-necking behavior. Then, to model their ductile fracture behavior, the Modified Mohr–Coulomb (MMC) fracture criterion is calibrated through uniaxial tension, plane strain, and shear tension tests. Next, hole-hemmed joints are manufactured and subjected to shear tests. A comprehensive numerical model of the hole hemming process and shear test is developed to investigate the joints’ failure mechanisms and study the influence of mechanical interlock and process deformation history on joint performance. The findings show that the created joints achieve a maximum load of 3.56 kN and a displacement of 9.30 mm. The main failure mode predicted is hole bearing, which aligns with the mode observed in experimental tests. Finite element analysis reveals that while no damage occurs in the copper sheet during the joining process, this sheet is damaged during the shear test, leading to joint failure. Additionally, a higher mechanical interlock leads to greater failure displacement and load, although it decreases the initial load level. This research demonstrates that novel hole-hemmed joints can effectively connect aluminum and copper sheets, presenting promising results for battery applications.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43452-025-01163-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-025-01163-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the failure behavior of novel joints between aluminum and copper sheets produced by hole hemming, with potential applications in hybrid busbars for electric vehicle batteries. This technology involves deforming the aluminum sheet to create a mechanical interlock with the copper sheet, eliminating the need for additional elements, heat, or welding. First, the materials are characterized, and the most suitable strain hardening law is determined to model their post-necking behavior. Then, to model their ductile fracture behavior, the Modified Mohr–Coulomb (MMC) fracture criterion is calibrated through uniaxial tension, plane strain, and shear tension tests. Next, hole-hemmed joints are manufactured and subjected to shear tests. A comprehensive numerical model of the hole hemming process and shear test is developed to investigate the joints’ failure mechanisms and study the influence of mechanical interlock and process deformation history on joint performance. The findings show that the created joints achieve a maximum load of 3.56 kN and a displacement of 9.30 mm. The main failure mode predicted is hole bearing, which aligns with the mode observed in experimental tests. Finite element analysis reveals that while no damage occurs in the copper sheet during the joining process, this sheet is damaged during the shear test, leading to joint failure. Additionally, a higher mechanical interlock leads to greater failure displacement and load, although it decreases the initial load level. This research demonstrates that novel hole-hemmed joints can effectively connect aluminum and copper sheets, presenting promising results for battery applications.

电动汽车用新型围孔混合母线失效分析
本文主要研究了一种新型的铝和铜片间的接缝,这种接缝在电动汽车电池的混合母线中具有潜在的应用前景。这项技术包括使铝板变形,与铜板形成机械联锁,从而消除了对额外元件、加热或焊接的需要。首先,对材料进行了表征,确定了最合适的应变硬化规律来模拟材料的后颈缩行为。然后,为了模拟其韧性断裂行为,通过单轴拉伸、平面应变和剪切拉伸试验校准了修正Mohr-Coulomb (MMC)断裂准则。接下来,制造孔缝接缝并进行剪切试验。为了研究节理破坏机理,研究节理的力学互锁和工艺变形历史对节理性能的影响,建立了节理闭合过程和剪切试验的综合数值模型。结果表明:所建节点最大荷载为3.56 kN,最大位移为9.30 mm;预测的主要失效模式为孔轴承,与试验观察到的模式一致。有限元分析表明,在连接过程中铜片未发生损伤,但在剪切试验过程中铜片发生损伤,导致接头破坏。此外,较高的机械联锁会导致更大的破坏位移和载荷,尽管它降低了初始载荷水平。这项研究表明,新型的孔边接头可以有效地连接铝和铜片,为电池应用提供了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Civil and Mechanical Engineering
Archives of Civil and Mechanical Engineering 工程技术-材料科学:综合
CiteScore
6.80
自引率
9.10%
发文量
201
审稿时长
4 months
期刊介绍: Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science. The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics. The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation. In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信