B. F. A. da Silva, M. M. Kasaei, A. Akhavan-Safar, R. J. C. Carbas, E. A. S. Marques, L. F. M. da Silva
{"title":"Failure analysis of novel hybrid busbars made by hole hemming for electric vehicle applications","authors":"B. F. A. da Silva, M. M. Kasaei, A. Akhavan-Safar, R. J. C. Carbas, E. A. S. Marques, L. F. M. da Silva","doi":"10.1007/s43452-025-01163-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on the failure behavior of novel joints between aluminum and copper sheets produced by hole hemming, with potential applications in hybrid busbars for electric vehicle batteries. This technology involves deforming the aluminum sheet to create a mechanical interlock with the copper sheet, eliminating the need for additional elements, heat, or welding. First, the materials are characterized, and the most suitable strain hardening law is determined to model their post-necking behavior. Then, to model their ductile fracture behavior, the Modified Mohr–Coulomb (MMC) fracture criterion is calibrated through uniaxial tension, plane strain, and shear tension tests. Next, hole-hemmed joints are manufactured and subjected to shear tests. A comprehensive numerical model of the hole hemming process and shear test is developed to investigate the joints’ failure mechanisms and study the influence of mechanical interlock and process deformation history on joint performance. The findings show that the created joints achieve a maximum load of 3.56 kN and a displacement of 9.30 mm. The main failure mode predicted is hole bearing, which aligns with the mode observed in experimental tests. Finite element analysis reveals that while no damage occurs in the copper sheet during the joining process, this sheet is damaged during the shear test, leading to joint failure. Additionally, a higher mechanical interlock leads to greater failure displacement and load, although it decreases the initial load level. This research demonstrates that novel hole-hemmed joints can effectively connect aluminum and copper sheets, presenting promising results for battery applications.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43452-025-01163-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-025-01163-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the failure behavior of novel joints between aluminum and copper sheets produced by hole hemming, with potential applications in hybrid busbars for electric vehicle batteries. This technology involves deforming the aluminum sheet to create a mechanical interlock with the copper sheet, eliminating the need for additional elements, heat, or welding. First, the materials are characterized, and the most suitable strain hardening law is determined to model their post-necking behavior. Then, to model their ductile fracture behavior, the Modified Mohr–Coulomb (MMC) fracture criterion is calibrated through uniaxial tension, plane strain, and shear tension tests. Next, hole-hemmed joints are manufactured and subjected to shear tests. A comprehensive numerical model of the hole hemming process and shear test is developed to investigate the joints’ failure mechanisms and study the influence of mechanical interlock and process deformation history on joint performance. The findings show that the created joints achieve a maximum load of 3.56 kN and a displacement of 9.30 mm. The main failure mode predicted is hole bearing, which aligns with the mode observed in experimental tests. Finite element analysis reveals that while no damage occurs in the copper sheet during the joining process, this sheet is damaged during the shear test, leading to joint failure. Additionally, a higher mechanical interlock leads to greater failure displacement and load, although it decreases the initial load level. This research demonstrates that novel hole-hemmed joints can effectively connect aluminum and copper sheets, presenting promising results for battery applications.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.