Liliana Fernanda Hernández-García, Luis Reséndiz, Magaly Ramírez-Como, Angel Sacramento, Víctor Cabrera, Magali Estrada, Josep Pallarès, Lluis F. Marsal
{"title":"Stability and charge transport analysis of high-performance PM6:Y7 nonfullerene organic solar cells using the metal–insulator–metal model","authors":"Liliana Fernanda Hernández-García, Luis Reséndiz, Magaly Ramírez-Como, Angel Sacramento, Víctor Cabrera, Magali Estrada, Josep Pallarès, Lluis F. Marsal","doi":"10.1007/s40243-025-00300-2","DOIUrl":null,"url":null,"abstract":"<div><p>Non-fullerene acceptors are promising materials for organic solar cells because of their flexibility and low cost; however, their long-term stability remains a critical challenge. In this study, we investigate the degradation mechanisms of conventionally structured solar cells (ITO/PEDOT: PSS/PM6/Y7/PDINO/Ag) under different environmental conditions: nitrogen preservation, encapsulation, and air exposure. Using the metal-insulator-metal (MIM) model, we simulate the current-voltage characteristics and extract key parameters to understand the physical mechanisms governing device degradation. The results show that air exposure primarily affects the anode interface, reducing the interfacial dipole energy and shifting the Fermi-level alignment of PEDOT: PSS, which is crucial for efficient hole extraction. This process leads to a deterioration in the hole transport properties over time, significantly affecting device performance. In contrast, the cathodic interface remains stable, suggesting that degradation is largely driven by changes in the hole transport layer. These findings provide critical insights into the interfacial degradation mechanisms of the NFA-based solar cells. Understanding these effects will aid in the development of strategies to enhance the stability and efficiency of organic photovoltaic devices for long-term operation.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00300-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00300-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-fullerene acceptors are promising materials for organic solar cells because of their flexibility and low cost; however, their long-term stability remains a critical challenge. In this study, we investigate the degradation mechanisms of conventionally structured solar cells (ITO/PEDOT: PSS/PM6/Y7/PDINO/Ag) under different environmental conditions: nitrogen preservation, encapsulation, and air exposure. Using the metal-insulator-metal (MIM) model, we simulate the current-voltage characteristics and extract key parameters to understand the physical mechanisms governing device degradation. The results show that air exposure primarily affects the anode interface, reducing the interfacial dipole energy and shifting the Fermi-level alignment of PEDOT: PSS, which is crucial for efficient hole extraction. This process leads to a deterioration in the hole transport properties over time, significantly affecting device performance. In contrast, the cathodic interface remains stable, suggesting that degradation is largely driven by changes in the hole transport layer. These findings provide critical insights into the interfacial degradation mechanisms of the NFA-based solar cells. Understanding these effects will aid in the development of strategies to enhance the stability and efficiency of organic photovoltaic devices for long-term operation.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies