Fluorine/bromine/selenium multi-heteroatoms substituted dual-asymmetric electron acceptors for o-xylene processed organic solar cells with 19.12% efficiency

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yibo Zhou  (, ), Guangyu Qi  (, ), Han Liu  (, ), Hairui Bai  (, ), Tengfei Li  (, ), Muhammad Hamza Maqsood, Chang Liu  (, ), Bohao Song  (, ), Na Chen  (, ), Guanghao Lu  (, ), Chao Gao  (, ), Yuhang Liu  (, ), Wenyan Su  (, ), Huiling Du  (, ), Ruijie Ma  (, ), Wei Ma  (, ), Qunping Fan  (, )
{"title":"Fluorine/bromine/selenium multi-heteroatoms substituted dual-asymmetric electron acceptors for o-xylene processed organic solar cells with 19.12% efficiency","authors":"Yibo Zhou \n (,&nbsp;),&nbsp;Guangyu Qi \n (,&nbsp;),&nbsp;Han Liu \n (,&nbsp;),&nbsp;Hairui Bai \n (,&nbsp;),&nbsp;Tengfei Li \n (,&nbsp;),&nbsp;Muhammad Hamza Maqsood,&nbsp;Chang Liu \n (,&nbsp;),&nbsp;Bohao Song \n (,&nbsp;),&nbsp;Na Chen \n (,&nbsp;),&nbsp;Guanghao Lu \n (,&nbsp;),&nbsp;Chao Gao \n (,&nbsp;),&nbsp;Yuhang Liu \n (,&nbsp;),&nbsp;Wenyan Su \n (,&nbsp;),&nbsp;Huiling Du \n (,&nbsp;),&nbsp;Ruijie Ma \n (,&nbsp;),&nbsp;Wei Ma \n (,&nbsp;),&nbsp;Qunping Fan \n (,&nbsp;)","doi":"10.1007/s40843-024-3167-7","DOIUrl":null,"url":null,"abstract":"<div><p>The development of high-performance near-infrared (NIR) absorbing electron acceptors is a major challenge in achieving high short-circuit current density (<i>J</i><sub>SC</sub>) to increase power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, three new multi-heteroatomized Y-series acceptors (bi-asy-Y-Br, bi-asy-Y-FBr, and bi-asy-Y-FBrF) were developed by combining dual-asymmetric selenium-fused core and brominated end-groups with different numbers of fluorine substitutions. With gradually increasing fluorination, three acceptors exhibit red-shift absorption. Among them, bi-asy-Y-FBrF presents planar molecular geometry, the maximum average electrostatic potential, and the minimum molecular dipole moment, which are conducive to intramolecular packing and charge transport. Moreover, D18:bi-asy-Y-FBrF active layer presents higher crystallinity, more suitable phase separation, and reduced charge recombination compared to D18:bi-asy-Y-Br and D18:bi-asy-Y-FBr blends. Consequently, among theses binary OSCs, D18:bi-asy-Y-FBrF device achieves a higher PCE of 15.74% with an enhanced <i>J</i><sub>SC</sub> of 26.28 mA cm<sup>−2</sup>, while D18:bi-asy-Y-Br device obtains a moderate PCE of 15.04% with the highest open-circuit voltage (<i>V</i><sub>OC</sub>) of 0.926 V. Inspired by its high <i>V</i><sub>OC</sub> and complementary absorption with NIR-absorbing BTP-eC9 as acceptor, bi-asy-Y-Br is introduced into binary D18:BTP-eC9 to construct ternary OSCs, achieving a further boosted PCE of 19.12%, which is among the top values for the reported green solvent processed OSCs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 3","pages":"850 - 859"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40843-024-3167-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3167-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of high-performance near-infrared (NIR) absorbing electron acceptors is a major challenge in achieving high short-circuit current density (JSC) to increase power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, three new multi-heteroatomized Y-series acceptors (bi-asy-Y-Br, bi-asy-Y-FBr, and bi-asy-Y-FBrF) were developed by combining dual-asymmetric selenium-fused core and brominated end-groups with different numbers of fluorine substitutions. With gradually increasing fluorination, three acceptors exhibit red-shift absorption. Among them, bi-asy-Y-FBrF presents planar molecular geometry, the maximum average electrostatic potential, and the minimum molecular dipole moment, which are conducive to intramolecular packing and charge transport. Moreover, D18:bi-asy-Y-FBrF active layer presents higher crystallinity, more suitable phase separation, and reduced charge recombination compared to D18:bi-asy-Y-Br and D18:bi-asy-Y-FBr blends. Consequently, among theses binary OSCs, D18:bi-asy-Y-FBrF device achieves a higher PCE of 15.74% with an enhanced JSC of 26.28 mA cm−2, while D18:bi-asy-Y-Br device obtains a moderate PCE of 15.04% with the highest open-circuit voltage (VOC) of 0.926 V. Inspired by its high VOC and complementary absorption with NIR-absorbing BTP-eC9 as acceptor, bi-asy-Y-Br is introduced into binary D18:BTP-eC9 to construct ternary OSCs, achieving a further boosted PCE of 19.12%, which is among the top values for the reported green solvent processed OSCs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信