{"title":"Exact Theory of Edge Diffraction and Launching of Transverse Electric Plasmons at Two-Dimensional Junctions","authors":"D. Svintsov, A. Shabanov","doi":"10.1134/S0021364024604263","DOIUrl":null,"url":null,"abstract":"<p>An exact solution for electromagnetic wave diffraction at the junction of two-dimensional electron systems is obtained and analyzed for electric field polarized along the edge. A special emphasis is paid to the metal-contacted and terminated edges. In the former case, electric field at the edge tends to zero; in the latter case, it tends to a finite value which is screened by a two-dimensional system in an anomalous fashion. For both types of edge and capacitive type of the two-dimensional conductivity, an incident wave excites transverse electric two-dimensional plasmons. The amplitude of excited TE plasmons is maximized and becomes order of incident wave amplitude for capacitive impedance of two-dimensional electron systems order of free space impedance. For both large and small impedance of two-dimensional electron systems, the amplitude of TE plasmons tends to zero according to the power laws which are explicitly derived.</p>","PeriodicalId":604,"journal":{"name":"JETP Letters","volume":"121 2","pages":"119 - 125"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JETP Letters","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0021364024604263","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An exact solution for electromagnetic wave diffraction at the junction of two-dimensional electron systems is obtained and analyzed for electric field polarized along the edge. A special emphasis is paid to the metal-contacted and terminated edges. In the former case, electric field at the edge tends to zero; in the latter case, it tends to a finite value which is screened by a two-dimensional system in an anomalous fashion. For both types of edge and capacitive type of the two-dimensional conductivity, an incident wave excites transverse electric two-dimensional plasmons. The amplitude of excited TE plasmons is maximized and becomes order of incident wave amplitude for capacitive impedance of two-dimensional electron systems order of free space impedance. For both large and small impedance of two-dimensional electron systems, the amplitude of TE plasmons tends to zero according to the power laws which are explicitly derived.
期刊介绍:
All topics of experimental and theoretical physics including gravitation, field theory, elementary particles and nuclei, plasma, nonlinear phenomena, condensed matter, superconductivity, superfluidity, lasers, and surfaces.