{"title":"Universal Enveloping Algebras of Poisson Superalgebras","authors":"Thomas Lamkin","doi":"10.1007/s10468-024-10312-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we define and study the universal enveloping algebra of a Poisson superalgebra. In particular, a new PBW Theorem for Lie-Rinehart superalgebras is proved leading to a PBW Theorem for Poisson superalgebras, we show the universal enveloping algebra of a Poisson Hopf superalgebra (resp. Poisson-Ore extension) is a Hopf superalgebra (resp. iterated Ore extension), and we study the universal enveloping algebra for interesting classes of Poisson superalgebras such as Poisson symplectic superalgebras.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 1","pages":"157 - 191"},"PeriodicalIF":0.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-024-10312-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10312-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we define and study the universal enveloping algebra of a Poisson superalgebra. In particular, a new PBW Theorem for Lie-Rinehart superalgebras is proved leading to a PBW Theorem for Poisson superalgebras, we show the universal enveloping algebra of a Poisson Hopf superalgebra (resp. Poisson-Ore extension) is a Hopf superalgebra (resp. iterated Ore extension), and we study the universal enveloping algebra for interesting classes of Poisson superalgebras such as Poisson symplectic superalgebras.
期刊介绍:
Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups.
The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.