{"title":"Application of machine learning to analyze Ohmic dissipative flow of \\(\\text{ZnO}{-}\\text{SAE}50\\) nanofluid between two concentric cylinders","authors":"Ghulam Haider, Naveed Ahmed","doi":"10.1140/epjp/s13360-025-06141-2","DOIUrl":null,"url":null,"abstract":"<div><p>The present research work aims to investigate a steady laminar flow of a nano-lubricant Zinc Oxide–Society of Automotive Engineers 50 alias between two concentric cylinders under the effects of Ohmic dissipation and thermal radiation. With the help of conservation laws, a theoretical controlling model for the flow and heat transmission has been developed. The model consisting of a system of partial differential equations has been reduced to a system of nonlinear ordinary differential equations by using similarity transformation. Solution approximation to the resulting system is carried out using artificial neural networks along with the Bayesian regularization technique. The reference data to train and test the network has been obtained by employing the Lobatto IIIA algorithm. To show the correctness of the approximation algorithm, different metrics, such as mean squared loss, error histogram, regression analysis, and function fit plots, are observed. Our graphical simulation shows that the Ohmic dissipation directly leads to an increase in temperature by converting electrical energy into heat. Conversely, the local rate of heat transfer falls due to Ohmic dissipation.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06141-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The present research work aims to investigate a steady laminar flow of a nano-lubricant Zinc Oxide–Society of Automotive Engineers 50 alias between two concentric cylinders under the effects of Ohmic dissipation and thermal radiation. With the help of conservation laws, a theoretical controlling model for the flow and heat transmission has been developed. The model consisting of a system of partial differential equations has been reduced to a system of nonlinear ordinary differential equations by using similarity transformation. Solution approximation to the resulting system is carried out using artificial neural networks along with the Bayesian regularization technique. The reference data to train and test the network has been obtained by employing the Lobatto IIIA algorithm. To show the correctness of the approximation algorithm, different metrics, such as mean squared loss, error histogram, regression analysis, and function fit plots, are observed. Our graphical simulation shows that the Ohmic dissipation directly leads to an increase in temperature by converting electrical energy into heat. Conversely, the local rate of heat transfer falls due to Ohmic dissipation.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.