Generalized Frobenius Manifolds with Non-flat Unity and Integrable Hierarchies

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Si-Qi Liu, Haonan Qu, Youjin Zhang
{"title":"Generalized Frobenius Manifolds with Non-flat Unity and Integrable Hierarchies","authors":"Si-Qi Liu,&nbsp;Haonan Qu,&nbsp;Youjin Zhang","doi":"10.1007/s00220-024-05213-1","DOIUrl":null,"url":null,"abstract":"<div><p>For any generalized Frobenius manifold with non-flat unity, we construct a bihamiltonian integrable hierarchy of hydrodynamic type which is an analogue of the Principal Hierarchy of a Frobenius manifold. We show that such an integrable hierarchy, which we also call the Principal Hierarchy, possesses Virasoro symmetries and a tau structure, and the Virasoro symmetries can be lifted to symmetries of the tau-cover of the integrable hierarchy. We derive the loop equation from the condition of linearization of actions of the Virasoro symmetries on the tau function, and construct the topological deformation of the Principal Hierarchy of a semisimple generalized Frobenius manifold with non-flat unity. We also give two examples of generalized Frobenius manifolds with non-flat unity and show that they are closely related to the well-known integrable hierarchies: the Volterra hierarchy, the <i>q</i>-deformed KdV hierarchy and the Ablowitz–Ladik hierarchy.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05213-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

For any generalized Frobenius manifold with non-flat unity, we construct a bihamiltonian integrable hierarchy of hydrodynamic type which is an analogue of the Principal Hierarchy of a Frobenius manifold. We show that such an integrable hierarchy, which we also call the Principal Hierarchy, possesses Virasoro symmetries and a tau structure, and the Virasoro symmetries can be lifted to symmetries of the tau-cover of the integrable hierarchy. We derive the loop equation from the condition of linearization of actions of the Virasoro symmetries on the tau function, and construct the topological deformation of the Principal Hierarchy of a semisimple generalized Frobenius manifold with non-flat unity. We also give two examples of generalized Frobenius manifolds with non-flat unity and show that they are closely related to the well-known integrable hierarchies: the Volterra hierarchy, the q-deformed KdV hierarchy and the Ablowitz–Ladik hierarchy.

具有非平坦统一和可积层次的广义Frobenius流形
对于任何具有非平面统一性的广义弗罗贝尼乌斯流形,我们构建了一个流体力学类型的双哈密顿可积分层次结构,它是弗罗贝尼乌斯流形的主层次结构的类似物。我们证明,这种可积分层次结构(我们也称之为主层次结构)具有维拉索罗对称性和头盖结构,维拉索罗对称性可以提升为可积分层次结构的头盖对称性。我们从Virasoro对称性对tau函数的作用的线性化条件推导出循环方程,并构造了具有非平坦统一性的半简单广义弗罗贝尼斯流形的主层次的拓扑变形。我们还给出了两个具有非平坦统一性的广义弗罗贝尼乌斯流形的例子,并证明它们与著名的可积分层次:Volterra层次、q变形KdV层次和Ablowitz-Ladik层次密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信