Asymptotics of the Finite-Temperature Sine Kernel Determinant

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Shuai-Xia Xu
{"title":"Asymptotics of the Finite-Temperature Sine Kernel Determinant","authors":"Shuai-Xia Xu","doi":"10.1007/s00220-025-05245-1","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper, we study the asymptotics of the Fredholm determinant <i>D</i>(<i>x</i>, <i>s</i>) of the finite-temperature deformation of the sine kernel, which represents the probability that there are no particles in the interval <span>\\((-x/\\pi ,x/\\pi )\\)</span> in the bulk scaling limit of the finite-temperature fermion system. The variable <i>s</i> in <i>D</i>(<i>x</i>, <i>s</i>) is related to the temperature. This determinant also corresponds to the finite-temperature correlation function of the one-dimensional Bose gas. We derive the asymptotics of <i>D</i>(<i>x</i>, <i>s</i>) in several different regimes in the (<i>x</i>, <i>s</i>)-plane. A third-order phase transition is observed in the asymptotic expansions as both <i>x</i> and <i>s</i> tend to positive infinity at certain related speed. The phase transition is then shown to be described by an integral involving the Hastings–McLeod solution of the second Painlevé equation.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05245-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we study the asymptotics of the Fredholm determinant D(xs) of the finite-temperature deformation of the sine kernel, which represents the probability that there are no particles in the interval \((-x/\pi ,x/\pi )\) in the bulk scaling limit of the finite-temperature fermion system. The variable s in D(xs) is related to the temperature. This determinant also corresponds to the finite-temperature correlation function of the one-dimensional Bose gas. We derive the asymptotics of D(xs) in several different regimes in the (xs)-plane. A third-order phase transition is observed in the asymptotic expansions as both x and s tend to positive infinity at certain related speed. The phase transition is then shown to be described by an integral involving the Hastings–McLeod solution of the second Painlevé equation.

Abstract Image

有限温度正弦核行列式的渐近性
在本文中,我们研究了正弦核有限温度变形的弗雷德霍姆行列式 D(x, s)的渐近性,它表示有限温度费米子系统体量缩放极限中区间 \((-x/\pi ,x/\pi )\) 内没有粒子的概率。D(x, s) 中的变量 s 与温度有关。这个行列式也对应于一维玻色气体的有限温度相关函数。我们推导了 D(x, s) 在 (x, s) 平面上几个不同状态下的渐近线。当 x 和 s 以一定的相关速度趋向正无穷大时,渐近展开中会出现三阶相变。相变可以通过涉及第二潘列韦方程的黑斯廷斯-麦克里奥德解的积分来描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信