{"title":"On Rough Calderón Solutions to the Navier–Stokes Equations and Applications to the Singular Set","authors":"Henry Popkin","doi":"10.1007/s00021-025-00930-6","DOIUrl":null,"url":null,"abstract":"<div><p>In 1934, Leray (Acta Math 63:193–248, 1934) proved the existence of global-in-time weak solutions to the Navier–Stokes equations for any divergence-free initial data in <span>\\(L^2(\\mathbb {R}^3)\\)</span>. In the 1980s, Giga (J Differ Equ 62(2):186–212, 1986) and Kato (Math Z 187(4):471–480, 1984) independently showed that there exist global-in-time mild solutions corresponding to small enough critical <span>\\(L^3(\\mathbb {R}^3)\\)</span> initial data. In 1990, Calderón (Trans Am Math Soc 318:179–200, 1990) filled the gap to show that there exist global-in-time weak solutions for all supercritical initial data in <span>\\(L^p(\\mathbb {R}^3)\\)</span> for <span>\\(2< p<3\\)</span> by utilising a splitting argument, blending the constructions of Leray and Giga-Kato. In this paper, we utilise a “Calderón-like” splitting to show the global-in-time existence of weak solutions to the Navier–Stokes equations corresponding to supercritical Besov space initial data <span>\\(u_0 \\in \\dot{B}^{s}_{{q},{\\infty }}(\\mathbb {R}^3)\\)</span> where <span>\\(q>2\\)</span> and <span>\\(-1+\\frac{2}{q}<s<\\min \\left( -1+\\frac{3}{q},0 \\right) \\)</span>, which fills a similar gap between Leray and known mild solution theory in the Besov space setting. We also use the Calderón-like splitting to investigate the structure of the singular set under a Type-I blow-up assumption in the Besov space setting, which is considerably rougher than in previous works.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-025-00930-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-025-00930-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In 1934, Leray (Acta Math 63:193–248, 1934) proved the existence of global-in-time weak solutions to the Navier–Stokes equations for any divergence-free initial data in \(L^2(\mathbb {R}^3)\). In the 1980s, Giga (J Differ Equ 62(2):186–212, 1986) and Kato (Math Z 187(4):471–480, 1984) independently showed that there exist global-in-time mild solutions corresponding to small enough critical \(L^3(\mathbb {R}^3)\) initial data. In 1990, Calderón (Trans Am Math Soc 318:179–200, 1990) filled the gap to show that there exist global-in-time weak solutions for all supercritical initial data in \(L^p(\mathbb {R}^3)\) for \(2< p<3\) by utilising a splitting argument, blending the constructions of Leray and Giga-Kato. In this paper, we utilise a “Calderón-like” splitting to show the global-in-time existence of weak solutions to the Navier–Stokes equations corresponding to supercritical Besov space initial data \(u_0 \in \dot{B}^{s}_{{q},{\infty }}(\mathbb {R}^3)\) where \(q>2\) and \(-1+\frac{2}{q}<s<\min \left( -1+\frac{3}{q},0 \right) \), which fills a similar gap between Leray and known mild solution theory in the Besov space setting. We also use the Calderón-like splitting to investigate the structure of the singular set under a Type-I blow-up assumption in the Besov space setting, which is considerably rougher than in previous works.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.