{"title":"Vertical Profiles of Optical Turbulence and Estimates of Turbulence Outer Scale above the Baykal Astrophysical Observatory","authors":"A. Yu. Shikhovtsev, P. G. Kovadlo","doi":"10.1134/S1024856024701197","DOIUrl":null,"url":null,"abstract":"<p>The study of spatiotemporal structure of optical turbulence and the development of techniques for determining its characteristics at different altitudes in the atmosphere are of great importance for astronomical adaptive optics. Design of an adaptive optics system and technical characteristics of its components largely depend on optical turbulence along the line of sight of a telescope. In this paper, the technique for estimating the vertical profiles of air refractive index structure characteristic is modified. Based on ERA5 reanalysis data, this method was used to derive statistically representative vertical profiles of air refractive index structure characteristic and turbulence outer scale at the Large Solar Vacuum Telescope (LSVT) site. The problem of estimating the turbulence outer scale is discussed taking into account surface mast micrometeorological measurements and optical measurements at the LSVT. The results are the basis for constructing a multi-mirror adaptive optics system for the LSVT. In particular, the above profiles are important for further refinement of the optical conjugation heights. The suggested technique can also be used to describe optical turbulence over other ground-based solar telescopes.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":"37 6","pages":"925 - 931"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024701197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The study of spatiotemporal structure of optical turbulence and the development of techniques for determining its characteristics at different altitudes in the atmosphere are of great importance for astronomical adaptive optics. Design of an adaptive optics system and technical characteristics of its components largely depend on optical turbulence along the line of sight of a telescope. In this paper, the technique for estimating the vertical profiles of air refractive index structure characteristic is modified. Based on ERA5 reanalysis data, this method was used to derive statistically representative vertical profiles of air refractive index structure characteristic and turbulence outer scale at the Large Solar Vacuum Telescope (LSVT) site. The problem of estimating the turbulence outer scale is discussed taking into account surface mast micrometeorological measurements and optical measurements at the LSVT. The results are the basis for constructing a multi-mirror adaptive optics system for the LSVT. In particular, the above profiles are important for further refinement of the optical conjugation heights. The suggested technique can also be used to describe optical turbulence over other ground-based solar telescopes.
期刊介绍:
Atmospheric and Oceanic Optics is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.