Advancing Wastewater-Based Biohydrogen Production Through Microbial Engineering and Process Innovations

IF 6.4 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Nurliyana Ahmad Zawawi, Nurzila Ab Latif, Mohd Firdaus Abdul Wahab, Achlesh Daverey, Zainul Akmar Zakaria, Siti Halimah Hasmoni
{"title":"Advancing Wastewater-Based Biohydrogen Production Through Microbial Engineering and Process Innovations","authors":"Nurliyana Ahmad Zawawi,&nbsp;Nurzila Ab Latif,&nbsp;Mohd Firdaus Abdul Wahab,&nbsp;Achlesh Daverey,&nbsp;Zainul Akmar Zakaria,&nbsp;Siti Halimah Hasmoni","doi":"10.1007/s40726-025-00343-z","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose of Review</h3><p>This review explores the potential of wastewater as a substrate for the production of clean, renewable energy in the form of hydrogen. The rich organic composition of wastewater pollutants provides an ideal medium for microbial biotransformation processes, enabling the conversion of these compounds into biohydrogen. Among others, emphasis is placed on the metabolic diversity of microorganisms, whose unique capabilities drive efficient hydrogen production. The review highlights advancements in microbial engineering for biohydrogen production, the role of diverse wastewater types, and the integration of hydrogen production with wastewater treatment as a sustainable energy recovery strategy.</p><h3>Recent Findings</h3><p>Recent advancements include using genetically engineered microbes to enhance hydrogen yield, optimizing reactor designs for scaling up production, and integrating microbial consortia to improve efficiency. Studies demonstrate significant hydrogen yields from wastewater, including municipal, industrial, and agricultural effluents, often accompanied by simultaneous pollutant removal. Furthermore, incorporating nanoparticles yields higher hydrogen production.</p><h3>Summary</h3><p>This review examines the three primary mechanisms for biohydrogen production—photofermentation, dark fermentation, and biophotolysis—and the advances in developing genetically modified microorganisms to enhance hydrogen yields. It underscores microorganisms’ versatility in utilizing wastewater as a substrate for hydrogen production, showcasing their ability to efficiently transform organic pollutants into renewable energy. These advancements highlight integrating biohydrogen production with wastewater treatment as a sustainable solution to energy and environmental challenges.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pollution Reports","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40726-025-00343-z","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose of Review

This review explores the potential of wastewater as a substrate for the production of clean, renewable energy in the form of hydrogen. The rich organic composition of wastewater pollutants provides an ideal medium for microbial biotransformation processes, enabling the conversion of these compounds into biohydrogen. Among others, emphasis is placed on the metabolic diversity of microorganisms, whose unique capabilities drive efficient hydrogen production. The review highlights advancements in microbial engineering for biohydrogen production, the role of diverse wastewater types, and the integration of hydrogen production with wastewater treatment as a sustainable energy recovery strategy.

Recent Findings

Recent advancements include using genetically engineered microbes to enhance hydrogen yield, optimizing reactor designs for scaling up production, and integrating microbial consortia to improve efficiency. Studies demonstrate significant hydrogen yields from wastewater, including municipal, industrial, and agricultural effluents, often accompanied by simultaneous pollutant removal. Furthermore, incorporating nanoparticles yields higher hydrogen production.

Summary

This review examines the three primary mechanisms for biohydrogen production—photofermentation, dark fermentation, and biophotolysis—and the advances in developing genetically modified microorganisms to enhance hydrogen yields. It underscores microorganisms’ versatility in utilizing wastewater as a substrate for hydrogen production, showcasing their ability to efficiently transform organic pollutants into renewable energy. These advancements highlight integrating biohydrogen production with wastewater treatment as a sustainable solution to energy and environmental challenges.

Graphical Abstract

综述目的 本综述探讨了废水作为基质生产氢气形式的清洁可再生能源的潜力。废水污染物中丰富的有机成分为微生物生物转化过程提供了理想的媒介,使这些化合物能够转化为生物氢。其中,重点是微生物的代谢多样性,其独特的能力推动了高效制氢。综述重点介绍了生物制氢微生物工程的进展、不同类型废水的作用,以及将制氢与废水处理相结合作为一种可持续的能源回收策略。最近的研究结果最近的进展包括利用基因工程微生物提高氢气产量、优化反应器设计以扩大生产规模,以及整合微生物联合体以提高效率。研究表明,从废水(包括市政、工业和农业废水)中产生大量氢气的同时,往往还能去除污染物。本综述探讨了生物制氢的三种主要机制--光发酵、暗发酵和生物光解,以及在开发转基因微生物以提高制氢量方面取得的进展。报告强调了微生物在利用废水作为制氢基质方面的多功能性,展示了微生物将有机污染物有效转化为可再生能源的能力。这些进展突出表明,将生物制氢与废水处理相结合,是应对能源和环境挑战的可持续解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Pollution Reports
Current Pollution Reports Environmental Science-Water Science and Technology
CiteScore
12.10
自引率
1.40%
发文量
31
期刊介绍: Current Pollution Reports provides in-depth review articles contributed by international experts on the most significant developments in the field of environmental pollution.By presenting clear, insightful, balanced reviews that emphasize recently published papers of major importance, the journal elucidates current and emerging approaches to identification, characterization, treatment, management of pollutants and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信