Thermal and acoustic performance of solid waste incorporated cement based composites: an analytical review

IF 4.4 3区 工程技术 Q1 ENGINEERING, CIVIL
K. A. P. Wijesinghe, Gamini Lanarolle, Chamila Gunasekara, David W. Law, H. D Hidallana-Gamage, Lijing Wang
{"title":"Thermal and acoustic performance of solid waste incorporated cement based composites: an analytical review","authors":"K. A. P. Wijesinghe,&nbsp;Gamini Lanarolle,&nbsp;Chamila Gunasekara,&nbsp;David W. Law,&nbsp;H. D Hidallana-Gamage,&nbsp;Lijing Wang","doi":"10.1007/s43452-025-01160-3","DOIUrl":null,"url":null,"abstract":"<div><p>Extensive reviews have been conducted on the mechanical, structural, and durability properties of cementitious composites incorporating waste materials. However, a significant knowledge gap exists regarding a comprehensive analysis of their thermal insulation and sound absorption properties. This review seeks to bridge that gap by examining the effects of various waste materials, such as rubber, plastic, glass, ceramic, wood, construction waste, and bio-waste, on these properties in concrete. Incorporating these waste materials improves thermal insulation and sound absorption mainly by increasing porosity and creating interconnected micro and macro pores, leveraging the waste materials’ inherent high porosity and low density. Key findings from the review include a 77% reduction in thermal conductivity with 45% volume replacement of dry materials with plastic compared to control concrete. In addition, maximum sound absorption of 60% at 2000 Hz was achieved with a combination of fly ash and rubber at 30% weight replacement of coarse aggregate. Optimizing the thermal insulation and sound absorption properties of concrete is critically dependent on effective particle size, as it directly influences the concrete’s pore structure. Finer rubber particles (0.1–4 mm) significantly enhance thermal insulation by reducing thermal conductivity to 0.28 W/mK, compared to 0.44 W/mK for coarser particles (5–10 mm). In contrast, coarser particles improve sound absorption, achieving a peak absorption of 32% at 1000 Hz, compared to 27% for finer particles. This dual optimization strategy demonstrates the potential for tailored particle sizes to improve the necessary properties of concrete. The review also outlines future research directions and practical applications, highlighting the potential of recyclable waste materials in the building construction and insulation industry.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43452-025-01160-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-025-01160-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Extensive reviews have been conducted on the mechanical, structural, and durability properties of cementitious composites incorporating waste materials. However, a significant knowledge gap exists regarding a comprehensive analysis of their thermal insulation and sound absorption properties. This review seeks to bridge that gap by examining the effects of various waste materials, such as rubber, plastic, glass, ceramic, wood, construction waste, and bio-waste, on these properties in concrete. Incorporating these waste materials improves thermal insulation and sound absorption mainly by increasing porosity and creating interconnected micro and macro pores, leveraging the waste materials’ inherent high porosity and low density. Key findings from the review include a 77% reduction in thermal conductivity with 45% volume replacement of dry materials with plastic compared to control concrete. In addition, maximum sound absorption of 60% at 2000 Hz was achieved with a combination of fly ash and rubber at 30% weight replacement of coarse aggregate. Optimizing the thermal insulation and sound absorption properties of concrete is critically dependent on effective particle size, as it directly influences the concrete’s pore structure. Finer rubber particles (0.1–4 mm) significantly enhance thermal insulation by reducing thermal conductivity to 0.28 W/mK, compared to 0.44 W/mK for coarser particles (5–10 mm). In contrast, coarser particles improve sound absorption, achieving a peak absorption of 32% at 1000 Hz, compared to 27% for finer particles. This dual optimization strategy demonstrates the potential for tailored particle sizes to improve the necessary properties of concrete. The review also outlines future research directions and practical applications, highlighting the potential of recyclable waste materials in the building construction and insulation industry.

固体废物掺入水泥基复合材料的热声性能分析综述
广泛的评论已经进行了机械,结构和耐久性性能胶凝复合材料纳入废物。然而,关于它们的隔热和吸声性能的综合分析存在显著的知识差距。本综述旨在通过研究各种废物材料,如橡胶、塑料、玻璃、陶瓷、木材、建筑废物和生物废物对混凝土这些特性的影响来弥合这一差距。这些废材料的加入主要通过增加孔隙率和创造相互连接的微观和宏观孔隙来提高隔热和吸声性能,利用废材料固有的高孔隙率和低密度。评估的主要发现包括,与对照混凝土相比,用塑料替代干燥材料的体积减少了45%,导热系数降低了77%。此外,当粉煤灰和橡胶的掺量比为粗骨料的30%时,在2000 Hz时的最大吸声率为60%。优化混凝土的隔热和吸声性能关键取决于有效粒径,因为它直接影响混凝土的孔隙结构。较细的橡胶颗粒(0.1-4 mm)将导热系数降低至0.28 W/mK,而较粗的颗粒(5-10 mm)的导热系数为0.44 W/mK,从而显著增强了隔热性能。相比之下,粗颗粒改善了吸声,在1000 Hz时达到32%的峰值吸收,而细颗粒为27%。这种双重优化策略展示了定制粒度的潜力,以改善混凝土的必要性能。综述还概述了未来的研究方向和实际应用,强调了可回收废物在建筑和保温行业中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Civil and Mechanical Engineering
Archives of Civil and Mechanical Engineering 工程技术-材料科学:综合
CiteScore
6.80
自引率
9.10%
发文量
201
审稿时长
4 months
期刊介绍: Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science. The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics. The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation. In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信