Jaweria Yousuf, Wahab Ullah, Muhammad Khalid, Muhammad Younus, M. G. B. Ashiq, Imed Boukhris, M. A. Gondal, Mehwish, Zahrah S. A. Almutawah, Maryam Dildar
{"title":"Structural, morphological, dielectric and magnetic properties of (ZnFe2O4)1-x(MWCNTs)x nanocomposites","authors":"Jaweria Yousuf, Wahab Ullah, Muhammad Khalid, Muhammad Younus, M. G. B. Ashiq, Imed Boukhris, M. A. Gondal, Mehwish, Zahrah S. A. Almutawah, Maryam Dildar","doi":"10.1140/epjp/s13360-025-06112-7","DOIUrl":null,"url":null,"abstract":"<div><p>The incorporation of multi-walled carbon nanotubes (MWCNTs) with spinel ferrites can lead to enhanced properties and performance in the resulting nanocomposite. MWCNTs known for their excellent mechanical strength, electrical conductivity and thermal stability can contribute positively to the overall characteristics of the composite. In this research paper, the solgel auto-combustion technique was used to synthesize zinc ferrite (ZnFe<sub>2</sub>O<sub>4</sub>) nanoparticles. Their (ZnFe<sub>2</sub>O<sub>4</sub>)<sub>1-x</sub>(MWCNTs)<sub>x</sub> nanocomposites with content MWCNTs as (x = 0, 0.05, 0.10, 0.15, 0.20 and 0.25) were prepared through a route known as ultrasonication route. Through X-ray diffraction analysis (XRD), the well-defined crystal arrangement and purity of the nanocomposite were confirmed. The loading and the dispersion of the MWCNTs on the surface of the nanoparticle were conducted using transmission electron microscopy (TEM). Fourier transform infrared spectroscopy (FTIR) was used to analyze various vibrational modes. The frequency-dependent dielectric characteristics were investigated by an impedance analyzer in the applied frequency range of 1 MHz to 3 GHz under standard temperature conditions. The dielectric properties including real and imaginary parts of dielectric constant, tangent loss, AC conductivity, real and imaginary parts of impedance and real and imaginary parts of electric modulus have drastically changed with the incorporation of the MWCNTs in pure nanoparticle’s matrix. The magnetic properties of the nanocomposites at room temperature in the range of − 25 to 25 kOe were investigated by utilizing VSM (vibrating sample magnetometery). The magnetic parameters such as maximum magnetization saturation (M<sub>mxs</sub>), coercivity (H<sub>c</sub>), remanence (M<sub>r</sub>) and anisotropic constant (K) as massively decreased with the addition of the MWCNTs. The optimized dielectric and magnetic characteristics of these nanocomposite suggest their potential use in high-frequency equipment, microwave devices and high energy storage devices.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06112-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The incorporation of multi-walled carbon nanotubes (MWCNTs) with spinel ferrites can lead to enhanced properties and performance in the resulting nanocomposite. MWCNTs known for their excellent mechanical strength, electrical conductivity and thermal stability can contribute positively to the overall characteristics of the composite. In this research paper, the solgel auto-combustion technique was used to synthesize zinc ferrite (ZnFe2O4) nanoparticles. Their (ZnFe2O4)1-x(MWCNTs)x nanocomposites with content MWCNTs as (x = 0, 0.05, 0.10, 0.15, 0.20 and 0.25) were prepared through a route known as ultrasonication route. Through X-ray diffraction analysis (XRD), the well-defined crystal arrangement and purity of the nanocomposite were confirmed. The loading and the dispersion of the MWCNTs on the surface of the nanoparticle were conducted using transmission electron microscopy (TEM). Fourier transform infrared spectroscopy (FTIR) was used to analyze various vibrational modes. The frequency-dependent dielectric characteristics were investigated by an impedance analyzer in the applied frequency range of 1 MHz to 3 GHz under standard temperature conditions. The dielectric properties including real and imaginary parts of dielectric constant, tangent loss, AC conductivity, real and imaginary parts of impedance and real and imaginary parts of electric modulus have drastically changed with the incorporation of the MWCNTs in pure nanoparticle’s matrix. The magnetic properties of the nanocomposites at room temperature in the range of − 25 to 25 kOe were investigated by utilizing VSM (vibrating sample magnetometery). The magnetic parameters such as maximum magnetization saturation (Mmxs), coercivity (Hc), remanence (Mr) and anisotropic constant (K) as massively decreased with the addition of the MWCNTs. The optimized dielectric and magnetic characteristics of these nanocomposite suggest their potential use in high-frequency equipment, microwave devices and high energy storage devices.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.