The cubic structure of Li3As stabilized by pressure or configurational entropy via the solid solution Li3As–Li2Se†‡

Martin Schmid, Florian Pielnhofer and Arno Pfitzner
{"title":"The cubic structure of Li3As stabilized by pressure or configurational entropy via the solid solution Li3As–Li2Se†‡","authors":"Martin Schmid, Florian Pielnhofer and Arno Pfitzner","doi":"10.1039/D4MR00127C","DOIUrl":null,"url":null,"abstract":"<p >The hexagonal to cubic phase transition of Li<small><sub>3</sub></small>As was investigated at high pressure and temperature, revealing a cubic high-pressure polymorph in the Li<small><sub>3</sub></small>Bi structure type. This cubic structure type is preserved in the solid solution of Li<small><sub>3</sub></small>As–Li<small><sub>2</sub></small>Se synthesized <em>via</em> mechanochemical ball milling. The solid solutions were investigated <em>via</em> X-ray powder diffraction, showing a linear dependency of the lattice parameter <em>a</em> on the mole fraction of the boundary phases Li<small><sub>3</sub></small>As and Li<small><sub>2</sub></small>Se, according to Vegard's law. Configurational entropy is generated by mixed anion lattice occupation between arsenide and selenide and therefore stabilizes the cubic structure of the solid solution. At elevated temperatures, the solid solution of Li<small><sub>3</sub></small>As–Li<small><sub>2</sub></small>Se reveals an exsolution process by forming the boundary phases Li<small><sub>3</sub></small>As and Li<small><sub>2</sub></small>Se, proving the metastable character of the system. Impedance spectroscopy was used to determine the lithium-ion conductivities in the Li<small><sub>3</sub></small>As–Li<small><sub>2</sub></small>Se system, showing significantly higher conductivity values (∼10<small><sup>−4</sup></small> to 10<small><sup>−6</sup></small> S cm<small><sup>−1</sup></small> at 50 °C) compared to the pure end members Li<small><sub>3</sub></small>As (∼10<small><sup>−7</sup></small> S cm<small><sup>−1</sup></small> at 50 °C) and Li<small><sub>2</sub></small>Se (∼10<small><sup>−7</sup></small> S cm<small><sup>−1</sup></small> at 175 °C).</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 2","pages":" 193-200"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00127c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Mechanochemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mr/d4mr00127c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The hexagonal to cubic phase transition of Li3As was investigated at high pressure and temperature, revealing a cubic high-pressure polymorph in the Li3Bi structure type. This cubic structure type is preserved in the solid solution of Li3As–Li2Se synthesized via mechanochemical ball milling. The solid solutions were investigated via X-ray powder diffraction, showing a linear dependency of the lattice parameter a on the mole fraction of the boundary phases Li3As and Li2Se, according to Vegard's law. Configurational entropy is generated by mixed anion lattice occupation between arsenide and selenide and therefore stabilizes the cubic structure of the solid solution. At elevated temperatures, the solid solution of Li3As–Li2Se reveals an exsolution process by forming the boundary phases Li3As and Li2Se, proving the metastable character of the system. Impedance spectroscopy was used to determine the lithium-ion conductivities in the Li3As–Li2Se system, showing significantly higher conductivity values (∼10−4 to 10−6 S cm−1 at 50 °C) compared to the pure end members Li3As (∼10−7 S cm−1 at 50 °C) and Li2Se (∼10−7 S cm−1 at 175 °C).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信