Characterization of Greenhouse Gas Emissions from the Territory of the St. Petersburg Agglomeration, Russia, Based on the Results of EMME-2019 and EMME-2020 Mobile Observational Campaigns

IF 0.9 Q4 OPTICS
M. V. Makarova, S. C. Foka, D. V. Ionov, V. S. Kostsov, V. M. Ivakhov, N. N. Paramonova
{"title":"Characterization of Greenhouse Gas Emissions from the Territory of the St. Petersburg Agglomeration, Russia, Based on the Results of EMME-2019 and EMME-2020 Mobile Observational Campaigns","authors":"M. V. Makarova,&nbsp;S. C. Foka,&nbsp;D. V. Ionov,&nbsp;V. S. Kostsov,&nbsp;V. M. Ivakhov,&nbsp;N. N. Paramonova","doi":"10.1134/S1024856024701045","DOIUrl":null,"url":null,"abstract":"<p>Saint Petersburg is the second most populous city in the Russian Federation and the fourth in Europe. According to official statistics, ∼5.6 million people permanently live in the city. In order to experimentally estimate greenhouse gas emissions from the territory of the St. Petersburg agglomeration, an original combined approach was developed and implemented during EMME-2019 and ЕММЕ-2020 observational campaigns. The paper summarizes the results of mobile experiments in 2019 and 2020. The period March – early May chosen for the EMME campaigns is shown to be optimal for estimating CO<sub>2</sub> emissions. The average anthropogenic additives caused by emissions from the territory of St. Petersburg were assessed at ∼1.07 ppmv for CO<sub>2</sub> and ∼6.61 ppbv for CH<sub>4</sub>. Experimental estimates of specific greenhouse gas fluxes for the territory of the St. Petersburg agglomeration amounted to 72 kt km<sup>−2</sup> year<sup>−1</sup> CO<sub>2</sub> and 198 t km<sup>−2</sup> year<sup>−1</sup> CH<sub>4</sub> for six days of the campaign in 2020; 80 kt km<sup>−2</sup> year<sup>−1</sup> CO<sub>2</sub> and 161 t km<sup>−2</sup> year<sup>−1</sup> CH<sub>4</sub> for 15 days of the campaigns in 2019 and 2020. The CH<sub>4</sub>/CO<sub>2</sub> and CO/CO<sub>2</sub> emission ratios for St. Petersburg in March–early May 2020 averaged 6.4 and 5.7 ppbv/ppmv, respectively. Lockdown restrictions due to COVID-19 pandemic affected the structure of emission from the territory of St. Petersburg, namely, a sharp decrease in transport activity significantly decreased CO emissions from motor vehicles.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":"37 6","pages":"786 - 797"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024701045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Saint Petersburg is the second most populous city in the Russian Federation and the fourth in Europe. According to official statistics, ∼5.6 million people permanently live in the city. In order to experimentally estimate greenhouse gas emissions from the territory of the St. Petersburg agglomeration, an original combined approach was developed and implemented during EMME-2019 and ЕММЕ-2020 observational campaigns. The paper summarizes the results of mobile experiments in 2019 and 2020. The period March – early May chosen for the EMME campaigns is shown to be optimal for estimating CO2 emissions. The average anthropogenic additives caused by emissions from the territory of St. Petersburg were assessed at ∼1.07 ppmv for CO2 and ∼6.61 ppbv for CH4. Experimental estimates of specific greenhouse gas fluxes for the territory of the St. Petersburg agglomeration amounted to 72 kt km−2 year−1 CO2 and 198 t km−2 year−1 CH4 for six days of the campaign in 2020; 80 kt km−2 year−1 CO2 and 161 t km−2 year−1 CH4 for 15 days of the campaigns in 2019 and 2020. The CH4/CO2 and CO/CO2 emission ratios for St. Petersburg in March–early May 2020 averaged 6.4 and 5.7 ppbv/ppmv, respectively. Lockdown restrictions due to COVID-19 pandemic affected the structure of emission from the territory of St. Petersburg, namely, a sharp decrease in transport activity significantly decreased CO emissions from motor vehicles.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
42.90%
发文量
84
期刊介绍: Atmospheric and Oceanic Optics  is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信