Preparation of hydrophilic and antifouling coatings via tannic acid and zwitterionic polymers†

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-03-06 DOI:10.1039/D5RA00643K
Aosheng Zhong, Ruixiang Tao, Ran Zong, Shuangyi Liu and Baoqing Shentu
{"title":"Preparation of hydrophilic and antifouling coatings via tannic acid and zwitterionic polymers†","authors":"Aosheng Zhong, Ruixiang Tao, Ran Zong, Shuangyi Liu and Baoqing Shentu","doi":"10.1039/D5RA00643K","DOIUrl":null,"url":null,"abstract":"<p >The attachment and colonization of proteins and bacteria on the surface of implantable medical materials can lead to biofilm formation, which in turn promotes inflammation and increases the treatment burden. This study developed a hydrophilic coating with excellent adhesion and antifouling lubrication properties, by exploiting the adhesive capability of tannic acid (TA) and the antifouling zwitterionic polymer. TA–Fe<small><sup>3+</sup></small> complex <em>via</em> coordination interactions formed a thin layer on the surface of polyethylene terephthalate (PET) and then poly(ethylenimine)-<em>g</em>-sulfobetaine methacrylate (PEI-<em>g</em>-SBMA) underwent a Schiff-base reaction with the TA layer, allowing the zwitterionic copolymer to be anchored onto the PET surface. Elemental and morphological surface analyses successfully confirmed the deposition of TA–Fe<small><sup>3+</sup></small> complex and PEI-<em>g</em>-SBMA onto the surfaces. Water contact angle and friction coefficient tests indicated an improvement in the hydrophilic and lubricating properties of the surface after modification. Importantly, the modified surfaces exhibited a significant reduction in the adsorption of bovine serum albumin (BSA), demonstrating the excellent antifouling ability. Hemolysis tests were also conducted to assess the hemocompatibility of the coatings. The results indicated that lubricative and antifouling coatings can be easily prepared on medical material surfaces using the approach, which showed significant potential for applications in biomedical fields.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 10","pages":" 7248-7256"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra00643k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra00643k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The attachment and colonization of proteins and bacteria on the surface of implantable medical materials can lead to biofilm formation, which in turn promotes inflammation and increases the treatment burden. This study developed a hydrophilic coating with excellent adhesion and antifouling lubrication properties, by exploiting the adhesive capability of tannic acid (TA) and the antifouling zwitterionic polymer. TA–Fe3+ complex via coordination interactions formed a thin layer on the surface of polyethylene terephthalate (PET) and then poly(ethylenimine)-g-sulfobetaine methacrylate (PEI-g-SBMA) underwent a Schiff-base reaction with the TA layer, allowing the zwitterionic copolymer to be anchored onto the PET surface. Elemental and morphological surface analyses successfully confirmed the deposition of TA–Fe3+ complex and PEI-g-SBMA onto the surfaces. Water contact angle and friction coefficient tests indicated an improvement in the hydrophilic and lubricating properties of the surface after modification. Importantly, the modified surfaces exhibited a significant reduction in the adsorption of bovine serum albumin (BSA), demonstrating the excellent antifouling ability. Hemolysis tests were also conducted to assess the hemocompatibility of the coatings. The results indicated that lubricative and antifouling coatings can be easily prepared on medical material surfaces using the approach, which showed significant potential for applications in biomedical fields.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信