Thermo-rheological and tribological properties of low- and high-oleic vegetable oils as sustainable bio-based lubricants†

Abiodun Saka, Tobechukwu K. Abor, Anthony C. Okafor and Monday U. Okoronkwo
{"title":"Thermo-rheological and tribological properties of low- and high-oleic vegetable oils as sustainable bio-based lubricants†","authors":"Abiodun Saka, Tobechukwu K. Abor, Anthony C. Okafor and Monday U. Okoronkwo","doi":"10.1039/D4SU00605D","DOIUrl":null,"url":null,"abstract":"<p >Vegetable oil-based lubricants have attracted increased research attention in recent decades as sustainable alternatives to conventional petroleum-based lubricants in metal machining. However, more studies are required to fully elucidate the thermo-rheological and tribological properties. This study presents an investigation of the thermo-rheological and tribological properties of different vegetable oils, including low- and high-oleic soybean oil, high-oleic sunflower, safflower, and canola oils. The lubricity, and evolution of viscosity and thermodynamic properties as a function of temperature were investigated to obtain important parameters including the viscosity index, flow behavior index, flow activation energy, specific heat capacity, thermal conductivity, coefficient of friction, contact angle, and thermal-oxidative decomposition profile. The properties were compared with those obtained with mineral oil, conventional emulsion coolant (CEC), and a commercial bio-based lubricant, Acculube LB-2000, commonly used for metal cutting applications. The vegetable oils displayed comparable properties to the commercial LB-2000 lubricant and pure mineral oil, featuring Newtonian fluid characteristics, high viscosity indices, high flow activation energy, low specific heat capacity and thermal conductivity, and high thermal-oxidative stability. Generally, vegetable oils with high oleic acid content featured higher rheo-thermal stability, higher contact angle, and better performance in reducing the coefficient of friction. On the other hand, CEC displayed non-Newtonian fluid behavior with lower initial viscosity and flow activation energy, and lower thermal-oxidative stability, but comparatively higher specific heat capacity and thermal conductivity compared to the vegetable oils. Compared to pure mineral oil, the vegetable oils show higher oxidative-thermal stability, thermal conductivity and specific heat capacity, and better lubrication performance in the mixed and hydrodynamic lubrication regimes of the Stribeck curve. The results provide important datasets that will contribute to improving the database on the properties of vegetable oils to guide their utilization in designing sustainable vegetable-oil-based biodegradable lubricants.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 3","pages":" 1461-1476"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00605d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00605d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vegetable oil-based lubricants have attracted increased research attention in recent decades as sustainable alternatives to conventional petroleum-based lubricants in metal machining. However, more studies are required to fully elucidate the thermo-rheological and tribological properties. This study presents an investigation of the thermo-rheological and tribological properties of different vegetable oils, including low- and high-oleic soybean oil, high-oleic sunflower, safflower, and canola oils. The lubricity, and evolution of viscosity and thermodynamic properties as a function of temperature were investigated to obtain important parameters including the viscosity index, flow behavior index, flow activation energy, specific heat capacity, thermal conductivity, coefficient of friction, contact angle, and thermal-oxidative decomposition profile. The properties were compared with those obtained with mineral oil, conventional emulsion coolant (CEC), and a commercial bio-based lubricant, Acculube LB-2000, commonly used for metal cutting applications. The vegetable oils displayed comparable properties to the commercial LB-2000 lubricant and pure mineral oil, featuring Newtonian fluid characteristics, high viscosity indices, high flow activation energy, low specific heat capacity and thermal conductivity, and high thermal-oxidative stability. Generally, vegetable oils with high oleic acid content featured higher rheo-thermal stability, higher contact angle, and better performance in reducing the coefficient of friction. On the other hand, CEC displayed non-Newtonian fluid behavior with lower initial viscosity and flow activation energy, and lower thermal-oxidative stability, but comparatively higher specific heat capacity and thermal conductivity compared to the vegetable oils. Compared to pure mineral oil, the vegetable oils show higher oxidative-thermal stability, thermal conductivity and specific heat capacity, and better lubrication performance in the mixed and hydrodynamic lubrication regimes of the Stribeck curve. The results provide important datasets that will contribute to improving the database on the properties of vegetable oils to guide their utilization in designing sustainable vegetable-oil-based biodegradable lubricants.

Abstract Image

低油酸和高油酸植物油作为可持续生物基润滑剂的热流变学和摩擦学特性
近几十年来,植物油基润滑油作为传统石油基润滑油的可持续替代品在金属加工中引起了越来越多的研究关注。然而,需要更多的研究来充分阐明热流变学和摩擦学性能。本文研究了不同植物油的热流变学和摩擦学性能,包括低油和高油大豆油、高油葵花籽油、红花油和菜籽油。研究了润滑油的润滑性、粘度和热力学性质随温度的变化规律,获得了粘度指数、流动行为指数、流动活化能、比热容、导热系数、摩擦系数、接触角和热氧化分解曲线等重要参数。将矿物油、常规乳化液冷却剂(CEC)和商用生物基润滑剂Acculube LB-2000(通常用于金属切削应用)所获得的性能进行了比较。植物油的性能与商用LB-2000润滑油和纯矿物油相当,具有牛顿流体特性、高粘度指数、高流动活化能、低比热容和导热系数以及高热氧化稳定性。油酸含量高的植物油一般具有较高的流变热稳定性、较高的接触角和较好的降低摩擦系数的性能。另一方面,与植物油相比,CEC表现出非牛顿流体行为,初始粘度和流动活化能较低,热氧化稳定性较低,但比热容和导热系数较高。与纯矿物油相比,植物油在Stribeck曲线的混合润滑和流体动力润滑中表现出更高的氧化热稳定性、导热系数和比热容量,以及更好的润滑性能。这些结果将为完善植物油性能数据库提供重要的数据集,以指导其在设计可持续植物油基生物可降解润滑剂中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信