Techno-economic assessment of two-stage hydropyrolysis of lignin for BTX production using iron-based catalysts†

Giuseppe Bagnato, Jamie Horgan and Aimaro Sanna
{"title":"Techno-economic assessment of two-stage hydropyrolysis of lignin for BTX production using iron-based catalysts†","authors":"Giuseppe Bagnato, Jamie Horgan and Aimaro Sanna","doi":"10.1039/D4SU00652F","DOIUrl":null,"url":null,"abstract":"<p >The thermal degradation of the lignin contained in biomass, followed by catalytic upgrading of the resultant bio-oil, offers a promising renewable generation pathway for aromatic commodity chemicals, in particular benzene, toluene and xylene (collectively ‘BTX’). The primary barrier to widespread adoption of this technology is its economic unfavourability relative to petroleum-derived BTX production. Previous work has determined that iron-based zirconium oxide catalysts for the hydrodeoxygenation (HDO) upgrading step are able to selectively generate aromatic hydrocarbons (up to 12 wt%) and minimise catalyst coking. The techno-economic assessment (TEA) of a hypothetical industrial-scale biomass hydropyrolysis plant, converting 2000 tonnes per day of lignin waste into commodity chemicals using FeReO<small><sub><em>x</em></sub></small>/ZrO<small><sub>2</sub></small> and Fe/ZrO<small><sub>2</sub></small> catalysed HDO respectively in scenario 1 (S1) and scenario 2 (S2), was investigated. The TEA was carried out by constructing a robust model that integrates both technical and economic aspects of the process. A Monte Carlo-type sensitivity analysis was then used to examine the sensitivity of the predicted earnings. With the yearly Cost of Manufacturing (COM) estimated to be 88/158 M£ per year and revenues predicted to be 116/171 M£ per year, the base-case processes were predicted to make a yearly gain of approximately 27.6 and 12.7 M£ per year respectively in scenarios 1 and 2, with the sensitivity analysis yielding gross earnings of approximately 65% (S1) and 95% (S2) of simulations. The variable to which the profitability was most sensitive was found to be the bio-oil yield, and maximisation of this yield is recommended as a focus of further research.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 3","pages":" 1448-1460"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00652f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00652f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal degradation of the lignin contained in biomass, followed by catalytic upgrading of the resultant bio-oil, offers a promising renewable generation pathway for aromatic commodity chemicals, in particular benzene, toluene and xylene (collectively ‘BTX’). The primary barrier to widespread adoption of this technology is its economic unfavourability relative to petroleum-derived BTX production. Previous work has determined that iron-based zirconium oxide catalysts for the hydrodeoxygenation (HDO) upgrading step are able to selectively generate aromatic hydrocarbons (up to 12 wt%) and minimise catalyst coking. The techno-economic assessment (TEA) of a hypothetical industrial-scale biomass hydropyrolysis plant, converting 2000 tonnes per day of lignin waste into commodity chemicals using FeReOx/ZrO2 and Fe/ZrO2 catalysed HDO respectively in scenario 1 (S1) and scenario 2 (S2), was investigated. The TEA was carried out by constructing a robust model that integrates both technical and economic aspects of the process. A Monte Carlo-type sensitivity analysis was then used to examine the sensitivity of the predicted earnings. With the yearly Cost of Manufacturing (COM) estimated to be 88/158 M£ per year and revenues predicted to be 116/171 M£ per year, the base-case processes were predicted to make a yearly gain of approximately 27.6 and 12.7 M£ per year respectively in scenarios 1 and 2, with the sensitivity analysis yielding gross earnings of approximately 65% (S1) and 95% (S2) of simulations. The variable to which the profitability was most sensitive was found to be the bio-oil yield, and maximisation of this yield is recommended as a focus of further research.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信