Analytical Estimation of Quench Protection Limits in Insulated, Non-Insulated, and Metal-Insulated ReBCO Accelerator Dipoles and Quadrupoles

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Tiina Salmi;Andrea Bersani;Luca Bottura;Barbara Caiffi;Stefania Farinon;Samuele Mariotto;Daniel Novelli
{"title":"Analytical Estimation of Quench Protection Limits in Insulated, Non-Insulated, and Metal-Insulated ReBCO Accelerator Dipoles and Quadrupoles","authors":"Tiina Salmi;Andrea Bersani;Luca Bottura;Barbara Caiffi;Stefania Farinon;Samuele Mariotto;Daniel Novelli","doi":"10.1109/TASC.2025.3540791","DOIUrl":null,"url":null,"abstract":"Future particle accelerators require high-field dipole and quadrupole magnets to guide the particles inside the collider ring. Magnets based on High-Temperature Superconductors (HTS) allow operation with higher magnetic field and higher operation temperature compared with the Low-Temperature Superconductor (LTS) based options. One of the issues presently limiting the HTS technology seems to be their protection in case of an unwanted resistive transition, i.e., a quench. New magnet technologies based on non-insulated or partially insulated (metal-insulated) winding technologies ease the problem compared with traditionally insulated magnets. In these magnets, the current can by-bass the quenched segment and the peak temperature remains lower. However, in high current density and high energy density operation, also the insulation-free options will have limitations, and the quench temperatures should be analyzed. In this contribution we present a method for analytical estimation of the protection limits in insulated, non-insulated and metal-insulated magnets. The equations can be used in early stages of magnet design to assess the feasibility and performance requirements of the eventual protection systems. The work stems from the International Muon Collider Collaboration and the results shown here review the protection limits in the dipoles and quadrupoles considered in its collider ring design. We discuss how parameters such as the coil size, metal insulation thickness and the amount of stabilizer copper in the tape impact the protectability of the magnet. This analysis considers only an adiabatic estimation of the peak temperature. Other potentially critical aspects such as voltages and mechanical stresses must be considered with more detailed models as the magnet designs mature.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10891257","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10891257/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Future particle accelerators require high-field dipole and quadrupole magnets to guide the particles inside the collider ring. Magnets based on High-Temperature Superconductors (HTS) allow operation with higher magnetic field and higher operation temperature compared with the Low-Temperature Superconductor (LTS) based options. One of the issues presently limiting the HTS technology seems to be their protection in case of an unwanted resistive transition, i.e., a quench. New magnet technologies based on non-insulated or partially insulated (metal-insulated) winding technologies ease the problem compared with traditionally insulated magnets. In these magnets, the current can by-bass the quenched segment and the peak temperature remains lower. However, in high current density and high energy density operation, also the insulation-free options will have limitations, and the quench temperatures should be analyzed. In this contribution we present a method for analytical estimation of the protection limits in insulated, non-insulated and metal-insulated magnets. The equations can be used in early stages of magnet design to assess the feasibility and performance requirements of the eventual protection systems. The work stems from the International Muon Collider Collaboration and the results shown here review the protection limits in the dipoles and quadrupoles considered in its collider ring design. We discuss how parameters such as the coil size, metal insulation thickness and the amount of stabilizer copper in the tape impact the protectability of the magnet. This analysis considers only an adiabatic estimation of the peak temperature. Other potentially critical aspects such as voltages and mechanical stresses must be considered with more detailed models as the magnet designs mature.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信