Prototype Features Driven High-Performance Few-Shot Radar Active Jamming Recognition

Hongping Zhou;Xiaomin Cai;Peng Peng;Zhongyi Guo
{"title":"Prototype Features Driven High-Performance Few-Shot Radar Active Jamming Recognition","authors":"Hongping Zhou;Xiaomin Cai;Peng Peng;Zhongyi Guo","doi":"10.1109/TRS.2025.3542410","DOIUrl":null,"url":null,"abstract":"Accurate identification of jamming is the premise of effective work of radar anti-jamming systems. As the electromagnetic environment becomes increasingly complex, radar detection faces not only the issue of insufficient training samples but also the challenge of imbalanced jamming samples. To solve this problem, this article proposes a few-shot recognition method of radar active jamming guided by prototype features. In this method, a pyramid structure is used to construct feature maps at different levels to integrate low-level features and high-level semantic features, so as to retain the information of the time-frequency images of the jamming signal to the maximum extent. Meanwhile, a differentiation information attention module is introduced to capture the global and local information of the feature maps and enhance the signal perception ability of the model. Finally, we propose a prototype feature extraction and fusion module to learn the prototype features of various samples and fuse them with backbone features. In view of the uneven data of the training set, the imbalanced coefficient is proposed to improve the recognition accuracy of the few-shot jamming signal in a complex electromagnetic environment. The experimental results on the jamming simulation dataset show that the proposed model has good recognition accuracy and robustness, and can handle imbalanced jamming samples. When the jamming-to-noise ratio (JNR) exceeds 2 dB, the average recognition accuracy of jamming can reach 99%. In the case of low JNR and sample imbalance, the proposed structure can effectively identify multiple small classes of jamming.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"430-440"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10891039/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate identification of jamming is the premise of effective work of radar anti-jamming systems. As the electromagnetic environment becomes increasingly complex, radar detection faces not only the issue of insufficient training samples but also the challenge of imbalanced jamming samples. To solve this problem, this article proposes a few-shot recognition method of radar active jamming guided by prototype features. In this method, a pyramid structure is used to construct feature maps at different levels to integrate low-level features and high-level semantic features, so as to retain the information of the time-frequency images of the jamming signal to the maximum extent. Meanwhile, a differentiation information attention module is introduced to capture the global and local information of the feature maps and enhance the signal perception ability of the model. Finally, we propose a prototype feature extraction and fusion module to learn the prototype features of various samples and fuse them with backbone features. In view of the uneven data of the training set, the imbalanced coefficient is proposed to improve the recognition accuracy of the few-shot jamming signal in a complex electromagnetic environment. The experimental results on the jamming simulation dataset show that the proposed model has good recognition accuracy and robustness, and can handle imbalanced jamming samples. When the jamming-to-noise ratio (JNR) exceeds 2 dB, the average recognition accuracy of jamming can reach 99%. In the case of low JNR and sample imbalance, the proposed structure can effectively identify multiple small classes of jamming.
原型特征驱动的高性能少弹雷达主动干扰识别
准确识别干扰是雷达抗干扰系统有效工作的前提。随着电磁环境的日益复杂,雷达探测不仅面临训练样本不足的问题,还面临干扰样本不平衡的挑战。针对这一问题,本文提出了一种基于原型特征的雷达有源干扰少弹识别方法。该方法采用金字塔结构构建不同层次的特征映射,将低级特征与高级语义特征相结合,最大限度地保留干扰信号时频图像的信息。同时,引入微分信息关注模块,捕获特征映射的全局和局部信息,增强模型的信号感知能力。最后,我们提出了原型特征提取与融合模块,学习各种样本的原型特征,并将其与骨干特征融合。针对训练集数据的不均匀性,提出了不平衡系数,以提高复杂电磁环境下对少弹干扰信号的识别精度。在干扰仿真数据集上的实验结果表明,该模型具有良好的识别精度和鲁棒性,能够处理不平衡干扰样本。当信噪比(JNR)大于2 dB时,干扰的平均识别精度可达99%。在低信噪比和样本不平衡的情况下,该结构可以有效识别多个小类干扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信