Energy Consumption Modeling of 2-D and 3-D Decoder Circuits

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yufei Xiao;Kai Cai;Xiaohu Ge;Yong Xiao
{"title":"Energy Consumption Modeling of 2-D and 3-D Decoder Circuits","authors":"Yufei Xiao;Kai Cai;Xiaohu Ge;Yong Xiao","doi":"10.1109/OJCAS.2025.3538707","DOIUrl":null,"url":null,"abstract":"Energy consumption evaluation for data processing tasks, such as encoding and decoding, is a critical consideration in designing very large scale integration (VLSI) circuits. Incorporating both information theory and circuit perspectives, a new general energy consumption model is proposed to capture the energy consumption of channel decoder circuits. For the binary erasure channel, lower bounds of energy consumption are derived for two-dimensional (2D) and three-dimensional (3D) decoder circuits under specified error probabilities, along with scaling rules for energy consumption in each case. Based on the proposed model, the lower bounds of energy consumption for staged serial and parallel implementations are derived, and a specific threshold value is identified to determine the parallel or serial decoding in decoder circuits. Staged serial implementations in 3D decoder circuits achieve a higher energy efficiency than fully parallel implementations when the processed data exceed 48 bits. Simulation results further demonstrate that the energy efficiency of 3D decoders improves with increasing data volume. When the number of input bits is 648, 1296 and 1944, the energy consumption of 3D decoders is reduced by 11.58%, 13.07%, and 13.86% compared to 2D decoders, respectively. The energy consumption of 3D decoders surpasses that of 2D decoders when the decoding error probability falls below a specific threshold of 0.035492. These results provide a foundational framework and benchmarks for analyzing and optimizing the energy consumption of 2D and 3D channel decoder circuits, enabling more efficient VLSI circuit designs.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"6 ","pages":"74-84"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10870295","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10870295/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Energy consumption evaluation for data processing tasks, such as encoding and decoding, is a critical consideration in designing very large scale integration (VLSI) circuits. Incorporating both information theory and circuit perspectives, a new general energy consumption model is proposed to capture the energy consumption of channel decoder circuits. For the binary erasure channel, lower bounds of energy consumption are derived for two-dimensional (2D) and three-dimensional (3D) decoder circuits under specified error probabilities, along with scaling rules for energy consumption in each case. Based on the proposed model, the lower bounds of energy consumption for staged serial and parallel implementations are derived, and a specific threshold value is identified to determine the parallel or serial decoding in decoder circuits. Staged serial implementations in 3D decoder circuits achieve a higher energy efficiency than fully parallel implementations when the processed data exceed 48 bits. Simulation results further demonstrate that the energy efficiency of 3D decoders improves with increasing data volume. When the number of input bits is 648, 1296 and 1944, the energy consumption of 3D decoders is reduced by 11.58%, 13.07%, and 13.86% compared to 2D decoders, respectively. The energy consumption of 3D decoders surpasses that of 2D decoders when the decoding error probability falls below a specific threshold of 0.035492. These results provide a foundational framework and benchmarks for analyzing and optimizing the energy consumption of 2D and 3D channel decoder circuits, enabling more efficient VLSI circuit designs.
二维和三维译码电路的能耗建模
数据处理任务(如编码和解码)的能耗评估是设计超大规模集成电路(VLSI)时需要考虑的关键问题。结合信息论和电路的观点,提出了一种新的通用能量消耗模型来捕捉信道译码电路的能量消耗。对于二进制擦除信道,推导了二维(2D)和三维(3D)解码器电路在指定误差概率下的能耗下界,以及每种情况下的能耗缩放规则。基于所提出的模型,推导了分阶段串行和并行实现的能量消耗下界,并确定了特定的阈值,以确定译码电路中的并行或串行译码。当处理的数据超过48位时,3D解码器电路中的分段串行实现比完全并行实现具有更高的能量效率。仿真结果进一步表明,三维解码器的能量效率随着数据量的增加而提高。当输入比特数为648、1296和1944时,3D解码器的能耗比2D解码器分别降低11.58%、13.07%和13.86%。当译码错误概率低于特定阈值0.035492时,3D解码器的能耗超过2D解码器。这些结果为分析和优化2D和3D信道解码器电路的能耗提供了基础框架和基准,从而实现更高效的VLSI电路设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信