Improved 2-D Chest CT Image Enhancement With Multi-Level VGG Loss

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Ayush Chaturvedi;Ritvik Prabhu;Mukund Yadav;Wu-Chun Feng;Guohua Cao
{"title":"Improved 2-D Chest CT Image Enhancement With Multi-Level VGG Loss","authors":"Ayush Chaturvedi;Ritvik Prabhu;Mukund Yadav;Wu-Chun Feng;Guohua Cao","doi":"10.1109/TRPMS.2024.3439010","DOIUrl":null,"url":null,"abstract":"Chest CT scans play an important role in diagnosing abnormalities associated with the lungs, such as tuberculosis, sarcoidosis, pneumonia, and, more recently, COVID-19. However, because conventional normal-dose chest CT scans require a much larger amount of radiation than x-rays, practitioners seek to replace conventional CT with low-dose CT (LDCT). LDCT often generates a low-quality CT image that poses noise and, in turn, negatively affects the accuracy of diagnosis. Therefore, in the context of COVID-19, due to the large number of affected populations, efficient image-denoising techniques are needed for LDCT images. Here, we present a deep learning (DL) model that combines two neural networks to enhance the quality of low-dose chest CT images. The DL model leverages a previously developed densenet and deconvolution-based network (DDNet) for feature extraction and extends it with a pretrained VGG network inside the loss function to suppress noise. Outputs from selected multiple levels in the VGG network (ML-VGG) are leveraged for the loss calculation. We tested our DDNet with ML-VGG loss using several sources of CT images and compared its performance to DDNet without VGG loss as well as DDNet with an empirically selected single-level VGG loss (DDNet-SL-VGG) and other state-of-the-art DL models. Our results show that DDNet combined with ML-VGG (DDNet-ML-VGG) achieves state-of-the-art denoising capabilities and improves the perceptual and quantitative image quality of chest CT images. Thus, DDNet with multilevel VGG loss could potentially be used as a post-acquisition image enhancement tool for medical professionals to diagnose and monitor chest diseases with higher accuracy.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 3","pages":"304-312"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10637253/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Chest CT scans play an important role in diagnosing abnormalities associated with the lungs, such as tuberculosis, sarcoidosis, pneumonia, and, more recently, COVID-19. However, because conventional normal-dose chest CT scans require a much larger amount of radiation than x-rays, practitioners seek to replace conventional CT with low-dose CT (LDCT). LDCT often generates a low-quality CT image that poses noise and, in turn, negatively affects the accuracy of diagnosis. Therefore, in the context of COVID-19, due to the large number of affected populations, efficient image-denoising techniques are needed for LDCT images. Here, we present a deep learning (DL) model that combines two neural networks to enhance the quality of low-dose chest CT images. The DL model leverages a previously developed densenet and deconvolution-based network (DDNet) for feature extraction and extends it with a pretrained VGG network inside the loss function to suppress noise. Outputs from selected multiple levels in the VGG network (ML-VGG) are leveraged for the loss calculation. We tested our DDNet with ML-VGG loss using several sources of CT images and compared its performance to DDNet without VGG loss as well as DDNet with an empirically selected single-level VGG loss (DDNet-SL-VGG) and other state-of-the-art DL models. Our results show that DDNet combined with ML-VGG (DDNet-ML-VGG) achieves state-of-the-art denoising capabilities and improves the perceptual and quantitative image quality of chest CT images. Thus, DDNet with multilevel VGG loss could potentially be used as a post-acquisition image enhancement tool for medical professionals to diagnose and monitor chest diseases with higher accuracy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信