Implementation of Photonic Crystals Into Davis LUT Module for GATE Simulation

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Xuzhi He;Carlotta Trigila;Emilie Roncali
{"title":"Implementation of Photonic Crystals Into Davis LUT Module for GATE Simulation","authors":"Xuzhi He;Carlotta Trigila;Emilie Roncali","doi":"10.1109/TRPMS.2024.3501373","DOIUrl":null,"url":null,"abstract":"The performance of positron emission tomography (PET) detectors has been constrained by the photodetector collection of optical photons emitted in the scintillator, which was limited to photons reaching the exit surface with an angle larger than the critical angle. Photonic crystals (PhCs) are periodic nanostructures with sizes comparable to the optical photons’ wavelengths, which can break through the critical angle limit. Thorough experimental investigation of PhCs effect on optical harvest in scintillator detectors is complex and costly. Simulation can overcome these challenges. Mainstream software, such as GATE does not support PhCs simulation. Here, we generalize the GATE optical model by incorporating the PhCs optical model into the look-up table (LUT) Davis model. We can model the performance of advanced scintillator detectors via the generalized LUT Davis model. The scintillator and PhCs materials tested in this work were lutetium oxyorthosilicate and titanium dioxide, respectively. Scintillators with a cross section of <inline-formula> <tex-math>$3\\times 3$ </tex-math></inline-formula> mm2 or <inline-formula> <tex-math>$10\\times 10$ </tex-math></inline-formula> mm2 and a thickness varying from 9 to 18 mm with a step size of 3 mm were modeled with a PhCs interface to the photodetector. Among the 4 tested PhCs configurations, the best optical photon harvest was improved by 62.4% compared to traditional coupling with variable results between PhCs structures. The energy resolution only slightly improved. We thus investigated the angular distribution of collected optical photons, which can guide the optimization of photodetectors’ detection efficiency at specific angles.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 3","pages":"269-276"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10756607","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10756607/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of positron emission tomography (PET) detectors has been constrained by the photodetector collection of optical photons emitted in the scintillator, which was limited to photons reaching the exit surface with an angle larger than the critical angle. Photonic crystals (PhCs) are periodic nanostructures with sizes comparable to the optical photons’ wavelengths, which can break through the critical angle limit. Thorough experimental investigation of PhCs effect on optical harvest in scintillator detectors is complex and costly. Simulation can overcome these challenges. Mainstream software, such as GATE does not support PhCs simulation. Here, we generalize the GATE optical model by incorporating the PhCs optical model into the look-up table (LUT) Davis model. We can model the performance of advanced scintillator detectors via the generalized LUT Davis model. The scintillator and PhCs materials tested in this work were lutetium oxyorthosilicate and titanium dioxide, respectively. Scintillators with a cross section of $3\times 3$ mm2 or $10\times 10$ mm2 and a thickness varying from 9 to 18 mm with a step size of 3 mm were modeled with a PhCs interface to the photodetector. Among the 4 tested PhCs configurations, the best optical photon harvest was improved by 62.4% compared to traditional coupling with variable results between PhCs structures. The energy resolution only slightly improved. We thus investigated the angular distribution of collected optical photons, which can guide the optimization of photodetectors’ detection efficiency at specific angles.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信