3-D Measurement and Reconstruction of Space Target Based on RAW Images

IF 5.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuandong Li;Qinglei Hu;Zhenchao Ouyang;Fei Dong;Dongyu Li
{"title":"3-D Measurement and Reconstruction of Space Target Based on RAW Images","authors":"Yuandong Li;Qinglei Hu;Zhenchao Ouyang;Fei Dong;Dongyu Li","doi":"10.1109/TIM.2025.3544706","DOIUrl":null,"url":null,"abstract":"The 3-D surface measurement and reconstruction of noncooperative targets are critical prerequisites for subsequent complex tasks such as target locking, tracking, rendezvous, docking, and landing. The space environment has a single light source and lacks atmospheric diffuse reflection effects, which makes observation challenging. Moreover, imaging modes that simulate human visual perception convert high dynamic range (HDR) RAW images into more storage-efficient standard red green blue (sRGB) formats, resulting in the loss of significant details. Therefore, neural implicit surface methods that use sRGB images often result in significant errors in such scenarios. To solve the above problems, this article proposes a 3-D surface measurement and reconstruction framework based on RAW images—RAWSurf. First, the HDR information in RAW images is used for supervision to enhance measurement and reconstruction accuracy. Moreover, to mitigate the impact of large magnitude spans of RAW images and low signal-to-noise ratio (SNR) of underexposed areas on reconstruction accuracy, a soft weight coefficient mapping is adopted. Meanwhile, use a progressive sampling (PS) strategy to ensure that the model focuses more on the spatial area. Then, by integrating three different state-of-the-art (SOTA) models with our framework, the average Chamfer distance error was reduced by 74%, the average Hausdorff distance error was reduced by 63%, and the average <inline-formula> <tex-math>$F{1}$ </tex-math></inline-formula>-score (%) was increased by 11.8. The code is publicly available at <uri>https://github.com/liyuandong145619/rawsurf</uri>.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-12"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10900536/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The 3-D surface measurement and reconstruction of noncooperative targets are critical prerequisites for subsequent complex tasks such as target locking, tracking, rendezvous, docking, and landing. The space environment has a single light source and lacks atmospheric diffuse reflection effects, which makes observation challenging. Moreover, imaging modes that simulate human visual perception convert high dynamic range (HDR) RAW images into more storage-efficient standard red green blue (sRGB) formats, resulting in the loss of significant details. Therefore, neural implicit surface methods that use sRGB images often result in significant errors in such scenarios. To solve the above problems, this article proposes a 3-D surface measurement and reconstruction framework based on RAW images—RAWSurf. First, the HDR information in RAW images is used for supervision to enhance measurement and reconstruction accuracy. Moreover, to mitigate the impact of large magnitude spans of RAW images and low signal-to-noise ratio (SNR) of underexposed areas on reconstruction accuracy, a soft weight coefficient mapping is adopted. Meanwhile, use a progressive sampling (PS) strategy to ensure that the model focuses more on the spatial area. Then, by integrating three different state-of-the-art (SOTA) models with our framework, the average Chamfer distance error was reduced by 74%, the average Hausdorff distance error was reduced by 63%, and the average $F{1}$ -score (%) was increased by 11.8. The code is publicly available at https://github.com/liyuandong145619/rawsurf.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信