A Dynamic Voiceprint Fusion Mechanism With Multispectrum for Noncontact Bearing Fault Diagnosis

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhong Liu;Yongyi Chen;Dan Zhang;Fanghong Guo
{"title":"A Dynamic Voiceprint Fusion Mechanism With Multispectrum for Noncontact Bearing Fault Diagnosis","authors":"Zhong Liu;Yongyi Chen;Dan Zhang;Fanghong Guo","doi":"10.1109/JSEN.2025.3530972","DOIUrl":null,"url":null,"abstract":"The existing bearing fault diagnosis methods are generally designed to identify the fault type by analyzing the collected vibration data, which belongs to the contact fault diagnosis technology. However, vibration sensors are not only complicated to install but also tend to rub against the equipment during prolonged use, affecting the accuracy of fault diagnosis. To address these issues, a noncontact fault diagnosis method, i.e., dynamic voiceprint fusion mechanism with multispectrum (DVFMMS) is proposed in this article. First, a three-channel feature extractor (TCFE) is designed to extract three different voiceprint features from the raw voiceprint data. Second, an attention mechanism, i.e., multichannel feature fusion self-attention (MCFFA), is proposed to adaptively adjust the network weights of different voiceprint features and realize the dynamic fusion of three voicing features. Finally, the fused features are fed into the classifier to achieve fault diagnosis. In this article, a voiceprint acquisition system based on the VS1053 chip is designed to collect the voiceprint of the bearing operation to accomplish the task of bearing fault diagnosis. The dataset of this study is obtained from the three-phase asynchronous motor platform of Zhejiang University of Technology. The experimental results demonstrate that DVFMMS still performs well under the limited sample size and overcomes the limitations of existing methods.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 5","pages":"8710-8720"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10852578/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The existing bearing fault diagnosis methods are generally designed to identify the fault type by analyzing the collected vibration data, which belongs to the contact fault diagnosis technology. However, vibration sensors are not only complicated to install but also tend to rub against the equipment during prolonged use, affecting the accuracy of fault diagnosis. To address these issues, a noncontact fault diagnosis method, i.e., dynamic voiceprint fusion mechanism with multispectrum (DVFMMS) is proposed in this article. First, a three-channel feature extractor (TCFE) is designed to extract three different voiceprint features from the raw voiceprint data. Second, an attention mechanism, i.e., multichannel feature fusion self-attention (MCFFA), is proposed to adaptively adjust the network weights of different voiceprint features and realize the dynamic fusion of three voicing features. Finally, the fused features are fed into the classifier to achieve fault diagnosis. In this article, a voiceprint acquisition system based on the VS1053 chip is designed to collect the voiceprint of the bearing operation to accomplish the task of bearing fault diagnosis. The dataset of this study is obtained from the three-phase asynchronous motor platform of Zhejiang University of Technology. The experimental results demonstrate that DVFMMS still performs well under the limited sample size and overcomes the limitations of existing methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信