Machine-Learning-Assisted Swarm Intelligence Algorithm for Antenna Optimization With Mixed Continuous and Binary Variables

IF 4.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Kai Fu;Kwok Wa Leung
{"title":"Machine-Learning-Assisted Swarm Intelligence Algorithm for Antenna Optimization With Mixed Continuous and Binary Variables","authors":"Kai Fu;Kwok Wa Leung","doi":"10.1109/TAP.2024.3510114","DOIUrl":null,"url":null,"abstract":"Many existing surrogate-assisted optimization algorithms are limited to designing antennas with continuous variables only. However, numerous challenges emerge when tackling antenna optimization problems that involve both continuous and binary design variables. This article proposes an efficient surrogate-assisted mixed continuous/binary particle swarm optimization (SAMPSO) algorithm to address these mixed-variable antenna optimization problems. The SAMPSO tightly integrates machine learning (ML) models with PSO in two key aspects: an ML-guided swarm updating method and an ML-assisted prescreening strategy. In addition, a novel local ML model training method is developed to reduce the algorithm time complexity. To verify its effectiveness, the SAMPSO is compared with two existing algorithms in solving benchmark functions and designing antennas. The results demonstrate that SAMPSO can achieve design objectives with a faster convergence speed.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"73 3","pages":"1662-1673"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10797666/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Many existing surrogate-assisted optimization algorithms are limited to designing antennas with continuous variables only. However, numerous challenges emerge when tackling antenna optimization problems that involve both continuous and binary design variables. This article proposes an efficient surrogate-assisted mixed continuous/binary particle swarm optimization (SAMPSO) algorithm to address these mixed-variable antenna optimization problems. The SAMPSO tightly integrates machine learning (ML) models with PSO in two key aspects: an ML-guided swarm updating method and an ML-assisted prescreening strategy. In addition, a novel local ML model training method is developed to reduce the algorithm time complexity. To verify its effectiveness, the SAMPSO is compared with two existing algorithms in solving benchmark functions and designing antennas. The results demonstrate that SAMPSO can achieve design objectives with a faster convergence speed.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.40
自引率
28.10%
发文量
968
审稿时长
4.7 months
期刊介绍: IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信