Optimizing minibeam collimator design for enhancing normal tissue sparing in ocular tumour proton therapy

IF 2.8 3区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL
Tsz-Yui Chan , Chien-Yu Lin , Shen-Hao Lee , Jiunn-Woei Liaw , Tsi-Chian Chao , I-Chun Cho
{"title":"Optimizing minibeam collimator design for enhancing normal tissue sparing in ocular tumour proton therapy","authors":"Tsz-Yui Chan ,&nbsp;Chien-Yu Lin ,&nbsp;Shen-Hao Lee ,&nbsp;Jiunn-Woei Liaw ,&nbsp;Tsi-Chian Chao ,&nbsp;I-Chun Cho","doi":"10.1016/j.radphyschem.2025.112674","DOIUrl":null,"url":null,"abstract":"<div><div>Uveal melanoma, the most common primary intraocular tumour in adults, presents significant therapeutic challenges due to its aggressive nature and the potential for severe treatment-related complications, including vision loss. Achieving effective tumour control while minimizing damage to surrounding healthy tissues remains a critical goal in radiotherapy. Proton minibeam radiotherapy (pMBRT), an advanced form of spatially fractionated radiotherapy (SFRT), has emerged as a promising approach to address these challenges.</div><div>pMBRT employs a mechanical collimator to spatially fractionate a broad proton beam into multiple narrow beamlets, creating a dose distribution with high-dose peaks and low-dose valleys in shallow regions. As the beamlets travel deeper into tissue, multiple Coulomb scattering facilitates their convergence, resulting in a uniform dose at the tumour target.</div><div>This study systematically optimized the collimator design by evaluating various geometries and materials, specifically brass and polylactic acid (PLA). Simulations of dose distributions were performed using the Tool for Particle Simulation (TOPAS) and validated through experimental measurements with Gafchromic films. Results indicated that brass collimators, with their high atomic number, produced sharper dose profiles and higher peak-to-valley dose ratios (PVDR), demonstrating superior spatial dose modulation. Conversely, PLA collimators yielded smoother dose profiles and lower secondary dose contributions, showcasing their potential for reducing collateral tissue damage.</div><div>The optimized collimator design, featuring a 0.8 mm slit width and a 1 mm spacing, achieved an ideal balance between maximizing PVDR and ensuring uniform beam recombination at the target depth. These findings underscore the potential of tailored collimator designs to enhance the therapeutic precision of pMBRT, offering improved tumour control with minimized impact on healthy tissues. This study provides a foundation for further advancements in collimator technology and its clinical applications in treating uveal melanoma and other challenging tumour sites.</div></div>","PeriodicalId":20861,"journal":{"name":"Radiation Physics and Chemistry","volume":"232 ","pages":"Article 112674"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Physics and Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969806X25001665","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Uveal melanoma, the most common primary intraocular tumour in adults, presents significant therapeutic challenges due to its aggressive nature and the potential for severe treatment-related complications, including vision loss. Achieving effective tumour control while minimizing damage to surrounding healthy tissues remains a critical goal in radiotherapy. Proton minibeam radiotherapy (pMBRT), an advanced form of spatially fractionated radiotherapy (SFRT), has emerged as a promising approach to address these challenges.
pMBRT employs a mechanical collimator to spatially fractionate a broad proton beam into multiple narrow beamlets, creating a dose distribution with high-dose peaks and low-dose valleys in shallow regions. As the beamlets travel deeper into tissue, multiple Coulomb scattering facilitates their convergence, resulting in a uniform dose at the tumour target.
This study systematically optimized the collimator design by evaluating various geometries and materials, specifically brass and polylactic acid (PLA). Simulations of dose distributions were performed using the Tool for Particle Simulation (TOPAS) and validated through experimental measurements with Gafchromic films. Results indicated that brass collimators, with their high atomic number, produced sharper dose profiles and higher peak-to-valley dose ratios (PVDR), demonstrating superior spatial dose modulation. Conversely, PLA collimators yielded smoother dose profiles and lower secondary dose contributions, showcasing their potential for reducing collateral tissue damage.
The optimized collimator design, featuring a 0.8 mm slit width and a 1 mm spacing, achieved an ideal balance between maximizing PVDR and ensuring uniform beam recombination at the target depth. These findings underscore the potential of tailored collimator designs to enhance the therapeutic precision of pMBRT, offering improved tumour control with minimized impact on healthy tissues. This study provides a foundation for further advancements in collimator technology and its clinical applications in treating uveal melanoma and other challenging tumour sites.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiation Physics and Chemistry
Radiation Physics and Chemistry 化学-核科学技术
CiteScore
5.60
自引率
17.20%
发文量
574
审稿时长
12 weeks
期刊介绍: Radiation Physics and Chemistry is a multidisciplinary journal that provides a medium for publication of substantial and original papers, reviews, and short communications which focus on research and developments involving ionizing radiation in radiation physics, radiation chemistry and radiation processing. The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. This could include papers that are very similar to previous publications, only with changed target substrates, employed materials, analyzed sites and experimental methods, report results without presenting new insights and/or hypothesis testing, or do not focus on the radiation effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信