DRTN: Dual Relation Transformer Network with feature erasure and contrastive learning for multi-label image classification

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wei Zhou, Kang Lin, Zhijie Zheng, Dihu Chen, Tao Su, Haifeng Hu
{"title":"DRTN: Dual Relation Transformer Network with feature erasure and contrastive learning for multi-label image classification","authors":"Wei Zhou,&nbsp;Kang Lin,&nbsp;Zhijie Zheng,&nbsp;Dihu Chen,&nbsp;Tao Su,&nbsp;Haifeng Hu","doi":"10.1016/j.neunet.2025.107309","DOIUrl":null,"url":null,"abstract":"<div><div>The objective of multi-label image classification (MLIC) task is to simultaneously identify multiple objects present in an image. Several researchers directly flatten 2D feature maps into 1D grid feature sequences, and utilize Transformer encoder to capture the correlations of grid features to learn object relationships. Although obtaining promising results, these Transformer-based methods lose spatial information. In addition, current attention-based models often focus only on salient feature regions, but ignore other potential useful features that contribute to MLIC task. To tackle these problems, we present a novel <strong>D</strong>ual <strong>R</strong>elation <strong>T</strong>ransformer <strong>N</strong>etwork (<strong>DRTN</strong>) for MLIC task, which can be trained in an end-to-end manner. Concretely, to compensate for the loss of spatial information of grid features resulting from the flattening operation, we adopt a grid aggregation scheme to generate pseudo-region features, which does not need to make additional expensive annotations to train object detector. Then, a new dual relation enhancement (DRE) module is proposed to capture correlations between objects using two different visual features, thereby complementing the advantages provided by both grid and pseudo-region features. After that, we design a new feature enhancement and erasure (FEE) module to learn discriminative features and mine additional potential valuable features. By using attention mechanism to discover the most salient feature regions and removing them with region-level erasure strategy, our FEE module is able to mine other potential useful features from the remaining parts. Further, we devise a novel contrastive learning (CL) module to encourage the foregrounds of salient and potential features to be closer, while pushing their foregrounds further away from background features. This manner compels our model to learn discriminative and valuable features more comprehensively. Extensive experiments demonstrate that DRTN method surpasses current MLIC models on three challenging benchmarks, <em>i.e.</em>, MS-COCO 2014, PASCAL VOC 2007, and NUS-WIDE datasets.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"187 ","pages":"Article 107309"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025001881","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of multi-label image classification (MLIC) task is to simultaneously identify multiple objects present in an image. Several researchers directly flatten 2D feature maps into 1D grid feature sequences, and utilize Transformer encoder to capture the correlations of grid features to learn object relationships. Although obtaining promising results, these Transformer-based methods lose spatial information. In addition, current attention-based models often focus only on salient feature regions, but ignore other potential useful features that contribute to MLIC task. To tackle these problems, we present a novel Dual Relation Transformer Network (DRTN) for MLIC task, which can be trained in an end-to-end manner. Concretely, to compensate for the loss of spatial information of grid features resulting from the flattening operation, we adopt a grid aggregation scheme to generate pseudo-region features, which does not need to make additional expensive annotations to train object detector. Then, a new dual relation enhancement (DRE) module is proposed to capture correlations between objects using two different visual features, thereby complementing the advantages provided by both grid and pseudo-region features. After that, we design a new feature enhancement and erasure (FEE) module to learn discriminative features and mine additional potential valuable features. By using attention mechanism to discover the most salient feature regions and removing them with region-level erasure strategy, our FEE module is able to mine other potential useful features from the remaining parts. Further, we devise a novel contrastive learning (CL) module to encourage the foregrounds of salient and potential features to be closer, while pushing their foregrounds further away from background features. This manner compels our model to learn discriminative and valuable features more comprehensively. Extensive experiments demonstrate that DRTN method surpasses current MLIC models on three challenging benchmarks, i.e., MS-COCO 2014, PASCAL VOC 2007, and NUS-WIDE datasets.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信