New Ethereum-based distributed PKI with a reward-and-punishment mechanism

IF 6.9 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chong-Gee Koa , Swee-Huay Heng , Ji-Jian Chin
{"title":"New Ethereum-based distributed PKI with a reward-and-punishment mechanism","authors":"Chong-Gee Koa ,&nbsp;Swee-Huay Heng ,&nbsp;Ji-Jian Chin","doi":"10.1016/j.bcra.2024.100239","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the critical role of Public Key Infrastructure (PKI) in ensuring the security of electronic transactions, particularly in validating the authenticity of websites in online environments. Traditional Centralised PKIs (CPKIs) relying on Certificate Authorities (CAs) face a significant drawback due to their susceptibility to a single point of failure. To address this concern, Decentralised PKIs (DPKIs) have emerged as an alternative. However, both centralised and decentralised approaches encounter specific challenges.</div><div>Researchers have made several attempts using blockchain-based PKI, which implements a reward and punishment mechanism to enhance the security of traditional PKI. Most of the attempts are focused on CA-based PKI, which still suffers from the risk of a single point of failure. Inspired by ETHERST, which is a blockchain-based PKI that implements Web of Trust (WoT) with reward and punishment, we introduce ETHERST version 3.0, with improvements in its secure level algorithm that enhances trustworthiness measurement. Comparative simulations between ETHERST version 2.0 and ETHERST version 3.0 reveal the superior performance of the latter in trustworthiness measurement and ensure the higher security of a virtual community. The new simulation algorithm with different node type definitions and assumptions presents results through tables and graphs, showing that ETHERST version 3.0 outperforms ETHERST version 2.0. This research contributes to advancing the field by introducing an innovative PKI solution with enhanced trustworthiness and security features.</div></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"6 1","pages":"Article 100239"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blockchain-Research and Applications","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096720924000526","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the critical role of Public Key Infrastructure (PKI) in ensuring the security of electronic transactions, particularly in validating the authenticity of websites in online environments. Traditional Centralised PKIs (CPKIs) relying on Certificate Authorities (CAs) face a significant drawback due to their susceptibility to a single point of failure. To address this concern, Decentralised PKIs (DPKIs) have emerged as an alternative. However, both centralised and decentralised approaches encounter specific challenges.
Researchers have made several attempts using blockchain-based PKI, which implements a reward and punishment mechanism to enhance the security of traditional PKI. Most of the attempts are focused on CA-based PKI, which still suffers from the risk of a single point of failure. Inspired by ETHERST, which is a blockchain-based PKI that implements Web of Trust (WoT) with reward and punishment, we introduce ETHERST version 3.0, with improvements in its secure level algorithm that enhances trustworthiness measurement. Comparative simulations between ETHERST version 2.0 and ETHERST version 3.0 reveal the superior performance of the latter in trustworthiness measurement and ensure the higher security of a virtual community. The new simulation algorithm with different node type definitions and assumptions presents results through tables and graphs, showing that ETHERST version 3.0 outperforms ETHERST version 2.0. This research contributes to advancing the field by introducing an innovative PKI solution with enhanced trustworthiness and security features.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.30
自引率
3.60%
发文量
0
期刊介绍: Blockchain: Research and Applications is an international, peer reviewed journal for researchers, engineers, and practitioners to present the latest advances and innovations in blockchain research. The journal publishes theoretical and applied papers in established and emerging areas of blockchain research to shape the future of blockchain technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信