Miao Liu , Yunli Huang , Chang Xu , Zhi Li , Shengjie Yao , Gaoxiang Long , Qiong Liu , Chuangang Fang , Xiaoxu Wu
{"title":"Realizing balanced thermal safety and heat insulation in hydrophobic silica aerogel composites","authors":"Miao Liu , Yunli Huang , Chang Xu , Zhi Li , Shengjie Yao , Gaoxiang Long , Qiong Liu , Chuangang Fang , Xiaoxu Wu","doi":"10.1016/j.polymdegradstab.2025.111294","DOIUrl":null,"url":null,"abstract":"<div><div>Interest in high-performance multifunctional hydrophobic silica aerogels (HSAs) has generated extensive discussion around HSAs endowed with enhanced infrared radiation suppression and excellent flame retardancy. Herein, we propose an eco-friendly and low-cost strategy for fabricating fire safe and infrared radiative shielding HSAs for sustainable thermal insulation. The as-created FRSA-BN-0.2 aerogel composite demonstrated superior flame retardant properties, with reductions in peak of heat release rate, total heat release, and total smoke release of 18.8 %, 36.1 %, and 88.8 %, respectively, compared to those of pure HSA. Additionally, the initial thermal degradation temperature and the temperature of peak heat flow were markedly increased by 95.0 °C and 104.1 °C, respectively. Furthermore, the aerogel composite exhibited outstanding hydrophobicity (a water contact angle of 142.1°), excellent thermal insulation (a thermal conductivity of 23.2 mW/m·K), and substantial infrared shielding performance. In this study, commercial flame retardant 9,10-dihydro-9-oxa-10-phosphophenanthrene-10-oxide (DOPO) was used as an acid catalyst substitute for strong acids, and boron nitride nanosheets were incorporated into the matrix to develop advanced multifunctional HSA aerogel composites. This material shows significant potential for application in fields such as aerospace, building insulation, and industrial thermal insulation.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"236 ","pages":"Article 111294"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391025001247","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Interest in high-performance multifunctional hydrophobic silica aerogels (HSAs) has generated extensive discussion around HSAs endowed with enhanced infrared radiation suppression and excellent flame retardancy. Herein, we propose an eco-friendly and low-cost strategy for fabricating fire safe and infrared radiative shielding HSAs for sustainable thermal insulation. The as-created FRSA-BN-0.2 aerogel composite demonstrated superior flame retardant properties, with reductions in peak of heat release rate, total heat release, and total smoke release of 18.8 %, 36.1 %, and 88.8 %, respectively, compared to those of pure HSA. Additionally, the initial thermal degradation temperature and the temperature of peak heat flow were markedly increased by 95.0 °C and 104.1 °C, respectively. Furthermore, the aerogel composite exhibited outstanding hydrophobicity (a water contact angle of 142.1°), excellent thermal insulation (a thermal conductivity of 23.2 mW/m·K), and substantial infrared shielding performance. In this study, commercial flame retardant 9,10-dihydro-9-oxa-10-phosphophenanthrene-10-oxide (DOPO) was used as an acid catalyst substitute for strong acids, and boron nitride nanosheets were incorporated into the matrix to develop advanced multifunctional HSA aerogel composites. This material shows significant potential for application in fields such as aerospace, building insulation, and industrial thermal insulation.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.