Plasma extracellular vesicle cargo microRNAs are associated with heart failure and cardiovascular death following acute coronary syndrome

Worawan B. Limpitikul , Michael G. Silverman , Nedyalka Valkov , Jeong-Gun Park , Ashish Yeri , Fernando Camacho Garcia , Guoping Li , Priyanka Gokulnath , Marta Garcia-Contreras , Eric Alsop , Elizabeth Hutchins , Michail Spanos , Claire Lin , Kriti Bomb , Anthony Rosenzweig , Raymond Kwong , Kendall van-Keuren Jensen , James L. Januzzi Jr. , Ravi Shah , David A. Morrow , Saumya Das
{"title":"Plasma extracellular vesicle cargo microRNAs are associated with heart failure and cardiovascular death following acute coronary syndrome","authors":"Worawan B. Limpitikul ,&nbsp;Michael G. Silverman ,&nbsp;Nedyalka Valkov ,&nbsp;Jeong-Gun Park ,&nbsp;Ashish Yeri ,&nbsp;Fernando Camacho Garcia ,&nbsp;Guoping Li ,&nbsp;Priyanka Gokulnath ,&nbsp;Marta Garcia-Contreras ,&nbsp;Eric Alsop ,&nbsp;Elizabeth Hutchins ,&nbsp;Michail Spanos ,&nbsp;Claire Lin ,&nbsp;Kriti Bomb ,&nbsp;Anthony Rosenzweig ,&nbsp;Raymond Kwong ,&nbsp;Kendall van-Keuren Jensen ,&nbsp;James L. Januzzi Jr. ,&nbsp;Ravi Shah ,&nbsp;David A. Morrow ,&nbsp;Saumya Das","doi":"10.1016/j.vesic.2025.100070","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and aims</h3><div>Patients with acute coronary syndromes (ACS) are at risk for long-term sequelae related to adverse ventricular remodeling including heart failure (HF) and cardiovascular death. Circulating microRNAs (miRNAs) have the potential to serve as biomarkers associated with the pathogenesis of ventricular remodeling. This study aims to identify and characterize plasma miRNAs associated with HF and cardiovascular death.</div></div><div><h3>Methods</h3><div>The association between 21 candidate miRNAs and HF or cardiovascular death was evaluated in 4541 patients from the Metabolic Efficiency with Ranolazine for Less Ischemia in Non-ST-Elevation Acute Coronary Syndromes (MERLIN)-TIMI 36 trial using samples from the time of index hospitalization for ACS. Associations between each miRNA and the composite endpoint of hospitalization for HF or cardiovascular death (HHF/CVD) were estimated in Cox proportional hazards models. The top candidate miRNAs were validated in an independent cohort of patients hospitalized for ACS using complementary methods for isolation of extracellular RNA carriers.</div></div><div><h3>Results</h3><div>Over 12 months in MERLIN-TIMI 36, 313 individuals met the primary endpoint. In total, 11 miRNAs were associated with HHF/CVD. After adjustment for clinical factors and established biomarkers, miR-223-3p (hazard ratio 0.81 [95% confidence interval: 0.60–1.09], 0.62 [0.45–0.87], and 0.61 [0.43–0.85] for the 2nd, 3rd, and 4th quartiles, respectively) and miR-378c (0.96 [0.65–1.42], 1.14 [0.78–1.66], and 1.39 [0.97–1.98], for the 2nd, 3rd, and 4th quartiles, respectively) were independently associated with the risk of HHF/CVD. In an independent validation cohort of 27 patients hospitalized with ACS, we found that both miRNAs were identified in different RNA-carrying extracellular particles in plasma, including extracellular vesicles (EVs) and nonvesicular extracellular nanoparticles (NVEPs) including exomeres and supermeres. Both miR-223-3p and 378c were more enriched in small EVs (sEVs) compared to NVEPs. In concordance with the direction of the associations observed in MERLIN-TIMI 36 with HHF, the level of miR-223-3p in sEVs and exomeres was positively associated with left ventricular ejection fraction (LVEF) post-ACS while the level of miR-378c in sEVs was negatively associated with LVEF in the acute phase.</div></div><div><h3>Conclusion</h3><div>Circulating miRNAs 223-3p and 378c were associated with the risk of HHF/CVD after adjustment for clinical factors and established cardiovascular biomarkers. Carrier-specific measurement of these miRNAs may emerge as novel minimally invasive biomarkers for post-ACS cardiac remodeling and shed light on potentially new targetable pathways.</div></div>","PeriodicalId":73007,"journal":{"name":"Extracellular vesicle","volume":"5 ","pages":"Article 100070"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracellular vesicle","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277304172500006X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims

Patients with acute coronary syndromes (ACS) are at risk for long-term sequelae related to adverse ventricular remodeling including heart failure (HF) and cardiovascular death. Circulating microRNAs (miRNAs) have the potential to serve as biomarkers associated with the pathogenesis of ventricular remodeling. This study aims to identify and characterize plasma miRNAs associated with HF and cardiovascular death.

Methods

The association between 21 candidate miRNAs and HF or cardiovascular death was evaluated in 4541 patients from the Metabolic Efficiency with Ranolazine for Less Ischemia in Non-ST-Elevation Acute Coronary Syndromes (MERLIN)-TIMI 36 trial using samples from the time of index hospitalization for ACS. Associations between each miRNA and the composite endpoint of hospitalization for HF or cardiovascular death (HHF/CVD) were estimated in Cox proportional hazards models. The top candidate miRNAs were validated in an independent cohort of patients hospitalized for ACS using complementary methods for isolation of extracellular RNA carriers.

Results

Over 12 months in MERLIN-TIMI 36, 313 individuals met the primary endpoint. In total, 11 miRNAs were associated with HHF/CVD. After adjustment for clinical factors and established biomarkers, miR-223-3p (hazard ratio 0.81 [95% confidence interval: 0.60–1.09], 0.62 [0.45–0.87], and 0.61 [0.43–0.85] for the 2nd, 3rd, and 4th quartiles, respectively) and miR-378c (0.96 [0.65–1.42], 1.14 [0.78–1.66], and 1.39 [0.97–1.98], for the 2nd, 3rd, and 4th quartiles, respectively) were independently associated with the risk of HHF/CVD. In an independent validation cohort of 27 patients hospitalized with ACS, we found that both miRNAs were identified in different RNA-carrying extracellular particles in plasma, including extracellular vesicles (EVs) and nonvesicular extracellular nanoparticles (NVEPs) including exomeres and supermeres. Both miR-223-3p and 378c were more enriched in small EVs (sEVs) compared to NVEPs. In concordance with the direction of the associations observed in MERLIN-TIMI 36 with HHF, the level of miR-223-3p in sEVs and exomeres was positively associated with left ventricular ejection fraction (LVEF) post-ACS while the level of miR-378c in sEVs was negatively associated with LVEF in the acute phase.

Conclusion

Circulating miRNAs 223-3p and 378c were associated with the risk of HHF/CVD after adjustment for clinical factors and established cardiovascular biomarkers. Carrier-specific measurement of these miRNAs may emerge as novel minimally invasive biomarkers for post-ACS cardiac remodeling and shed light on potentially new targetable pathways.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Extracellular vesicle
Extracellular vesicle Biochemistry, Genetics and Molecular Biology (General)
自引率
0.00%
发文量
0
审稿时长
43 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信