Gilnei Bruno da Silva , Geórgia de Carvalho Braga , Júlia Leão Batista Simões , Margarete Dulce Bagatini , Aniela Pinto Kempka
{"title":"Mitochondrial dysfunction and carcinogenesis: The engagement of ion channels in cancer development","authors":"Gilnei Bruno da Silva , Geórgia de Carvalho Braga , Júlia Leão Batista Simões , Margarete Dulce Bagatini , Aniela Pinto Kempka","doi":"10.1016/j.ceca.2025.103010","DOIUrl":null,"url":null,"abstract":"<div><div>Mitochondria represent a fundamental structure for cellular homeostasis, controlling multiple conditions regarding energetic functions and cellular survival. To maintain these organelles functioning in ideal conditions, their membranes count with ion channels for different inorganic ions, which must be balanced to offer the proper function for both the organelle and the cell. However, studies have shown that other health conditions impair the activities of mitochondrial ion channels, including cancer. In this sense, the altered activities of potassium, calcium, and calcium-activated potassium channels are mainly linked with cancer development and cellular homeostasis alteration, demonstrating their role as pharmacological targets. With that in mind, scientists have found significant mitochondrial and cellular responses related to apoptosis and reduction of cellular survival from cells with modulated ion channels, indicating the potential of this possible therapy in carcinogenic contexts. Nonetheless, few studies still evaluate mitochondrial ion channel modulation as a treatment against cancer. Hence, more research must be conducted on this subject.</div></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"128 ","pages":"Article 103010"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell calcium","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143416025000193","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria represent a fundamental structure for cellular homeostasis, controlling multiple conditions regarding energetic functions and cellular survival. To maintain these organelles functioning in ideal conditions, their membranes count with ion channels for different inorganic ions, which must be balanced to offer the proper function for both the organelle and the cell. However, studies have shown that other health conditions impair the activities of mitochondrial ion channels, including cancer. In this sense, the altered activities of potassium, calcium, and calcium-activated potassium channels are mainly linked with cancer development and cellular homeostasis alteration, demonstrating their role as pharmacological targets. With that in mind, scientists have found significant mitochondrial and cellular responses related to apoptosis and reduction of cellular survival from cells with modulated ion channels, indicating the potential of this possible therapy in carcinogenic contexts. Nonetheless, few studies still evaluate mitochondrial ion channel modulation as a treatment against cancer. Hence, more research must be conducted on this subject.
期刊介绍:
Cell Calcium covers the field of calcium metabolism and signalling in living systems, from aspects including inorganic chemistry, physiology, molecular biology and pathology. Topic themes include:
Roles of calcium in regulating cellular events such as apoptosis, necrosis and organelle remodelling
Influence of calcium regulation in affecting health and disease outcomes