{"title":"Responses of atmospheric inorganic nitrogen deposition to emissions in a polluted region of southern China","authors":"Zhi-Li Chen , Yan Qiu , Wei Song , Xue-Yan Liu","doi":"10.1016/j.atmosres.2025.108026","DOIUrl":null,"url":null,"abstract":"<div><div>Human-induced nitrogen (N) emissions have enhanced atmospheric N deposition in many polluted regions. However, the spatiotemporal relations between N emissions and deposition remain poorly characterized, which hampers N emission management and effect evaluation in polluted regions. This study investigated dry and wet inorganic N (IN) deposition at representative urban and suburban sites from June 2018 to May 2019 and analyzed historical N emission and deposition data in a N-polluted region of southern China. Dry, wet, and total IN deposition were 14.1 and 6.3, 36.4 and 29.0, and 50.5 and 35.3 kg N ha<sup>−1</sup> yr<sup>−1</sup> at the urban and suburban sites, respectively. Gaseous N accounted for 79–87 % of dry IN deposition and dry deposition accounted for 18–28 % of total IN deposition. The inter-annual variation of wet IN deposition exhibits an inverted “V” shape: the turning point for ammonium (NH<sub>4</sub><sup>+</sup>) was in 1991 due to the decline in the ratio of ammonia to sulfur dioxide and nitrogen oxide and ammonia emissions; nitrate (NO<sub>3</sub><sup>−</sup>) peaked in 2010, reflecting the benefits of national controls on nitrogen oxide emissions. Consequently, a shift to approximately equal NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>−</sup> deposition occurred in 2010–2020. Spatially, annual IN deposition increased with human-induced land use and N emissions, and about 30 % of the area exceeded the critical load for N deposition. Current emission controls are reducing N emissions and deposition but further mitigation measures are needed, especially broader regional strategies.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"319 ","pages":"Article 108026"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809525001188","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Human-induced nitrogen (N) emissions have enhanced atmospheric N deposition in many polluted regions. However, the spatiotemporal relations between N emissions and deposition remain poorly characterized, which hampers N emission management and effect evaluation in polluted regions. This study investigated dry and wet inorganic N (IN) deposition at representative urban and suburban sites from June 2018 to May 2019 and analyzed historical N emission and deposition data in a N-polluted region of southern China. Dry, wet, and total IN deposition were 14.1 and 6.3, 36.4 and 29.0, and 50.5 and 35.3 kg N ha−1 yr−1 at the urban and suburban sites, respectively. Gaseous N accounted for 79–87 % of dry IN deposition and dry deposition accounted for 18–28 % of total IN deposition. The inter-annual variation of wet IN deposition exhibits an inverted “V” shape: the turning point for ammonium (NH4+) was in 1991 due to the decline in the ratio of ammonia to sulfur dioxide and nitrogen oxide and ammonia emissions; nitrate (NO3−) peaked in 2010, reflecting the benefits of national controls on nitrogen oxide emissions. Consequently, a shift to approximately equal NH4+ and NO3− deposition occurred in 2010–2020. Spatially, annual IN deposition increased with human-induced land use and N emissions, and about 30 % of the area exceeded the critical load for N deposition. Current emission controls are reducing N emissions and deposition but further mitigation measures are needed, especially broader regional strategies.
期刊介绍:
The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.