Inversed Pyramid Network with Spatial-adapted and Task-oriented Tuning for few-shot learning

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiaowei Zhao , Duorui Wang , Shihao Bai , Shuo Wang , Yajun Gao , Yu Liang , Yuqing Ma , Xianglong Liu
{"title":"Inversed Pyramid Network with Spatial-adapted and Task-oriented Tuning for few-shot learning","authors":"Xiaowei Zhao ,&nbsp;Duorui Wang ,&nbsp;Shihao Bai ,&nbsp;Shuo Wang ,&nbsp;Yajun Gao ,&nbsp;Yu Liang ,&nbsp;Yuqing Ma ,&nbsp;Xianglong Liu","doi":"10.1016/j.patcog.2025.111415","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of artificial intelligence, deep neural networks have achieved great performance in many tasks. However, traditional deep learning methods require a large amount of training data, which may not be available in certain practical scenarios. In contrast, few-shot learning aims to learn a model that can be readily adapted to new unseen classes from only one or a few labeled examples. Despite this success, most existing methods rely on pre-trained feature extractor networks trained with global features, ignoring the discrimination of local features, and weak generalization capabilities limit their performance. To address the problem, according to the human’s coarse-to-fine cognition paradigm, we propose an Inverted Pyramid Network with Spatial-adapted and Task-oriented Tuning (TIPN) for few-shot learning. Specifically, the proposed framework represents local features for categories that are difficult to distinguish by global features and recognizes objects from both global and local perspectives. Moreover, to ensure the calibration validity of the proposed model at the local stage, we introduce the Spatial-adapted Layer to preserve the discriminative global representation ability of the pre-trained backbone network. Meanwhile, as the representations extracted from the past categories are not applicable to the current new tasks, we further propose the Task-oriented Tuning strategy to adjust the parameters of the Batch Normalization layer in the pre-trained feature extractor network, to explicitly transfer knowledge from base classes to novel classes according to the support samples of each task. Extensive experiments conducted on multiple benchmark datasets demonstrate that our method can significantly outperform many state-of-the-art few-shot learning methods.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"164 ","pages":"Article 111415"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325000755","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of artificial intelligence, deep neural networks have achieved great performance in many tasks. However, traditional deep learning methods require a large amount of training data, which may not be available in certain practical scenarios. In contrast, few-shot learning aims to learn a model that can be readily adapted to new unseen classes from only one or a few labeled examples. Despite this success, most existing methods rely on pre-trained feature extractor networks trained with global features, ignoring the discrimination of local features, and weak generalization capabilities limit their performance. To address the problem, according to the human’s coarse-to-fine cognition paradigm, we propose an Inverted Pyramid Network with Spatial-adapted and Task-oriented Tuning (TIPN) for few-shot learning. Specifically, the proposed framework represents local features for categories that are difficult to distinguish by global features and recognizes objects from both global and local perspectives. Moreover, to ensure the calibration validity of the proposed model at the local stage, we introduce the Spatial-adapted Layer to preserve the discriminative global representation ability of the pre-trained backbone network. Meanwhile, as the representations extracted from the past categories are not applicable to the current new tasks, we further propose the Task-oriented Tuning strategy to adjust the parameters of the Batch Normalization layer in the pre-trained feature extractor network, to explicitly transfer knowledge from base classes to novel classes according to the support samples of each task. Extensive experiments conducted on multiple benchmark datasets demonstrate that our method can significantly outperform many state-of-the-art few-shot learning methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信