{"title":"Mechanical properties and stress-strain relationship of early strength polymer-modified concrete at different ages","authors":"Jiawei Gu , Jia Xing , Jialing Che , Siew Choo Chin","doi":"10.1016/j.pce.2025.103895","DOIUrl":null,"url":null,"abstract":"<div><div>Early-strength polymer-modified concrete (ES-PMC) has demonstrated considerable promise for rapid repair applications, where its performance is critical to ensuring the safety and quality of concrete structure construction. This study examines the mechanical properties and stress-strain behavior of ES-PMC at various curing ages (1.5 h, 2 h, 3 h, 1 day, 3 days, 7 days, and 28 days), with early-strength concrete (ESC) serving as the control group. The results indicate that ES-PMC generally surpasses ESC in terms of cube compressive strength, uniaxial compressive strength, and flexural strength, achieving values of 35.8 MPa, 25.4 MPa, and 4.4 MPa, respectively, at 2 h. Furthermore, a strong linear correlation is observed between the cube compressive and uniaxial compressive strengths of both ESC and ES-PMC. Under uniaxial loading, as the curing age increases, both materials undergo greater damage, with peak stress, elastic modulus, and toughness increasing over time, while peak strain, ultimate strain, and relative energy absorption capacity decrease. Additionally, a modified stress-strain model for ES-PMC was developed, incorporating age-related factors to accurately depict its stress-strain behavior across different ages. This model provides a theoretical basis for promoting its application in practical engineering and predicting its performance at various stages.</div></div>","PeriodicalId":54616,"journal":{"name":"Physics and Chemistry of the Earth","volume":"139 ","pages":"Article 103895"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474706525000452","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Early-strength polymer-modified concrete (ES-PMC) has demonstrated considerable promise for rapid repair applications, where its performance is critical to ensuring the safety and quality of concrete structure construction. This study examines the mechanical properties and stress-strain behavior of ES-PMC at various curing ages (1.5 h, 2 h, 3 h, 1 day, 3 days, 7 days, and 28 days), with early-strength concrete (ESC) serving as the control group. The results indicate that ES-PMC generally surpasses ESC in terms of cube compressive strength, uniaxial compressive strength, and flexural strength, achieving values of 35.8 MPa, 25.4 MPa, and 4.4 MPa, respectively, at 2 h. Furthermore, a strong linear correlation is observed between the cube compressive and uniaxial compressive strengths of both ESC and ES-PMC. Under uniaxial loading, as the curing age increases, both materials undergo greater damage, with peak stress, elastic modulus, and toughness increasing over time, while peak strain, ultimate strain, and relative energy absorption capacity decrease. Additionally, a modified stress-strain model for ES-PMC was developed, incorporating age-related factors to accurately depict its stress-strain behavior across different ages. This model provides a theoretical basis for promoting its application in practical engineering and predicting its performance at various stages.
期刊介绍:
Physics and Chemistry of the Earth is an international interdisciplinary journal for the rapid publication of collections of refereed communications in separate thematic issues, either stemming from scientific meetings, or, especially compiled for the occasion. There is no restriction on the length of articles published in the journal. Physics and Chemistry of the Earth incorporates the separate Parts A, B and C which existed until the end of 2001.
Please note: the Editors are unable to consider submissions that are not invited or linked to a thematic issue. Please do not submit unsolicited papers.
The journal covers the following subject areas:
-Solid Earth and Geodesy:
(geology, geochemistry, tectonophysics, seismology, volcanology, palaeomagnetism and rock magnetism, electromagnetism and potential fields, marine and environmental geosciences as well as geodesy).
-Hydrology, Oceans and Atmosphere:
(hydrology and water resources research, engineering and management, oceanography and oceanic chemistry, shelf, sea, lake and river sciences, meteorology and atmospheric sciences incl. chemistry as well as climatology and glaciology).
-Solar-Terrestrial and Planetary Science:
(solar, heliospheric and solar-planetary sciences, geology, geophysics and atmospheric sciences of planets, satellites and small bodies as well as cosmochemistry and exobiology).