Nintedanib abrogates patient vitreous-induced Akt activation and tube formation of human retinal microvascular endothelial cells

IF 2.7 4区 生物学 Q1 ANATOMY & MORPHOLOGY
Qiang Li , Xiaoping Zhou , Yanhui Yang , Qing Zhang , Zhiyuan Li , Haote Han , Fang Yuan , Hongwei Deng , Hetian Lei , Yajian Duan
{"title":"Nintedanib abrogates patient vitreous-induced Akt activation and tube formation of human retinal microvascular endothelial cells","authors":"Qiang Li ,&nbsp;Xiaoping Zhou ,&nbsp;Yanhui Yang ,&nbsp;Qing Zhang ,&nbsp;Zhiyuan Li ,&nbsp;Haote Han ,&nbsp;Fang Yuan ,&nbsp;Hongwei Deng ,&nbsp;Hetian Lei ,&nbsp;Yajian Duan","doi":"10.1016/j.tice.2025.102817","DOIUrl":null,"url":null,"abstract":"<div><div>Growth factors and cytokines in the vitreous are critical drivers of proliferative diabetic retinopathy (PDR), a condition in which many patients exhibit resistance to current therapies. PDR is characterized by the formation of fibrovascular membranes on the vitreous side of the retina, which, if untreated, can lead to retinal detachment. Nintedanib, a clinically approved drug for idiopathic pulmonary fibrosis, targets multiple tyrosine kinases, including vascular endothelial growth factor receptors (VEGFRs), platelet-derived growth factor receptors (PDGFRs), and fibroblast growth factor receptors (FGFRs). In this study, we demonstrate that nintedanib effectively inhibits PDR vitreous-induced signaling molecules—namely, phosphorylation of VEGFR2, Akt, and Erk1/2—as well as cellular responses, including proliferation, migration, and tube formation in primary human retinal microvascular endothelial cells, at a non-toxic concentration of 1 μM. These findings suggest that nintedanib holds potential as a novel therapeutic option for the treatment of PDR.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"94 ","pages":"Article 102817"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816625000977","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Growth factors and cytokines in the vitreous are critical drivers of proliferative diabetic retinopathy (PDR), a condition in which many patients exhibit resistance to current therapies. PDR is characterized by the formation of fibrovascular membranes on the vitreous side of the retina, which, if untreated, can lead to retinal detachment. Nintedanib, a clinically approved drug for idiopathic pulmonary fibrosis, targets multiple tyrosine kinases, including vascular endothelial growth factor receptors (VEGFRs), platelet-derived growth factor receptors (PDGFRs), and fibroblast growth factor receptors (FGFRs). In this study, we demonstrate that nintedanib effectively inhibits PDR vitreous-induced signaling molecules—namely, phosphorylation of VEGFR2, Akt, and Erk1/2—as well as cellular responses, including proliferation, migration, and tube formation in primary human retinal microvascular endothelial cells, at a non-toxic concentration of 1 μM. These findings suggest that nintedanib holds potential as a novel therapeutic option for the treatment of PDR.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue & cell
Tissue & cell 医学-解剖学与形态学
CiteScore
3.90
自引率
0.00%
发文量
234
期刊介绍: Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed. Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信