Investigation on the hysteresis behavior of a quarter-wavelength standing-wave thermoacoustic engine

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Kai Wang , Shancheng Tao , Zhaoyu Li , Xinyan Li , Lihua Tang , Geng Chen
{"title":"Investigation on the hysteresis behavior of a quarter-wavelength standing-wave thermoacoustic engine","authors":"Kai Wang ,&nbsp;Shancheng Tao ,&nbsp;Zhaoyu Li ,&nbsp;Xinyan Li ,&nbsp;Lihua Tang ,&nbsp;Geng Chen","doi":"10.1016/j.ijmecsci.2025.110084","DOIUrl":null,"url":null,"abstract":"<div><div>Like many nonlinear dynamical systems, thermoacoustic engines (TAEs) exhibit hysteresis behavior in the amplitude of self-excited acoustic oscillations when the temperature gradient implemented across the porous material is first increased and then decreased gradually. This research studies the hysteresis of a quarter-wavelength standing-wave TAE that relies on a parallel plate stack to realize thermal-acoustic energy conversion. Computational fluid dynamics (CFD) is first employed to investigate the influence of stack parameters, such as stack gap and position, on the hysteresis behavior of the TAE. Following this, in analogy with the modeling of Rijke tubes, a simplified mathematical model of the TAE is developed to provide a qualitative interpretation of the hysteresis curves obtained from the CFD simulations. Finally, experimental tests are conducted to validate the presence of hysteresis in the TAE. Results show that in the bistable zone, the dynamic behavior of the TAE can be either linearly stable fixed points or limit cycles. An external pressure disturbance or energy sink can be applied to alter the dynamics of the TAE. There exist optimal values for the stack gap and position at which the lower and upper critical temperatures, as well as their difference, are minimized. At the optimal stack gap, the pressure amplitude reaches its minimum. However, as the stack is shifted toward the open end, the pressure amplitude gradually decreases, highlighting a trade-off between reducing the onset temperature difference and improving acoustic power generation. The present study gives deeper insights into the hysteresis phenomena reported in previous experimental studies, providing useful guidelines for reducing the critical temperature gradients for the excitation of acoustic oscillations in TAEs.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"290 ","pages":"Article 110084"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325001705","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Like many nonlinear dynamical systems, thermoacoustic engines (TAEs) exhibit hysteresis behavior in the amplitude of self-excited acoustic oscillations when the temperature gradient implemented across the porous material is first increased and then decreased gradually. This research studies the hysteresis of a quarter-wavelength standing-wave TAE that relies on a parallel plate stack to realize thermal-acoustic energy conversion. Computational fluid dynamics (CFD) is first employed to investigate the influence of stack parameters, such as stack gap and position, on the hysteresis behavior of the TAE. Following this, in analogy with the modeling of Rijke tubes, a simplified mathematical model of the TAE is developed to provide a qualitative interpretation of the hysteresis curves obtained from the CFD simulations. Finally, experimental tests are conducted to validate the presence of hysteresis in the TAE. Results show that in the bistable zone, the dynamic behavior of the TAE can be either linearly stable fixed points or limit cycles. An external pressure disturbance or energy sink can be applied to alter the dynamics of the TAE. There exist optimal values for the stack gap and position at which the lower and upper critical temperatures, as well as their difference, are minimized. At the optimal stack gap, the pressure amplitude reaches its minimum. However, as the stack is shifted toward the open end, the pressure amplitude gradually decreases, highlighting a trade-off between reducing the onset temperature difference and improving acoustic power generation. The present study gives deeper insights into the hysteresis phenomena reported in previous experimental studies, providing useful guidelines for reducing the critical temperature gradients for the excitation of acoustic oscillations in TAEs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信