{"title":"The counting function for Elkies primes","authors":"Meher Elijah Lippmann , Kevin J. McGown","doi":"10.1016/j.jnt.2024.12.009","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>E</em> be an elliptic curve over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> where <em>q</em> is a prime power. The Schoof–Elkies–Atkin (SEA) algorithm is a standard method for counting the number of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-points on <em>E</em>. The asymptotic complexity of the SEA algorithm depends on the distribution of the so-called Elkies primes.</div><div>Assuming GRH, we prove that the least Elkies prime is bounded by <span><math><msup><mrow><mo>(</mo><mn>2</mn><mi>log</mi><mo></mo><mn>4</mn><mi>q</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> when <span><math><mi>q</mi><mo>≥</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>9</mn></mrow></msup></math></span>. Previously, Satoh and Galbraith established an upper bound of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>log</mi><mo></mo><mi>q</mi><mo>)</mo></mrow><mrow><mn>2</mn><mo>+</mo><mi>ε</mi></mrow></msup><mo>)</mo></math></span>. Let <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> denote the number of Elkies primes less than <em>X</em>. Assuming GRH, we also show<span><span><span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>π</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><msqrt><mrow><mi>X</mi></mrow></msqrt><msup><mrow><mo>(</mo><mi>log</mi><mo></mo><mi>q</mi><mi>X</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>log</mi><mo></mo><mi>X</mi></mrow></mfrac><mo>)</mo></mrow><mspace></mspace><mo>.</mo></math></span></span></span></div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"275 ","pages":"Pages 35-48"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25000459","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let E be an elliptic curve over a finite field where q is a prime power. The Schoof–Elkies–Atkin (SEA) algorithm is a standard method for counting the number of -points on E. The asymptotic complexity of the SEA algorithm depends on the distribution of the so-called Elkies primes.
Assuming GRH, we prove that the least Elkies prime is bounded by when . Previously, Satoh and Galbraith established an upper bound of . Let denote the number of Elkies primes less than X. Assuming GRH, we also show
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.