{"title":"Nitrogen ameliorates NaCl toxicity in eggplant seedlings: Role of hydrogen sulphide and sulphur metabolic signaling","authors":"Madhulika Singh , Pratibha Singh , S. Shweta , Utkarsha Singh , Sheo Mohan Prasad","doi":"10.1016/j.bcab.2025.103543","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates physiological and biochemical adaptation of eggplant (<em>Solanum melongena</em> L.) seedlings to sodium chloride (NaCl<sub>0</sub>: 0.0 g NaCl kg<sup>−1</sup> sand, NaCl<sub>1</sub>: 0.3 g NaCl kg<sup>−1</sup> sand and NaCl<sub>2</sub>: 0.5 g NaCl kg<sup>−1</sup> sand) by varied levels of nitrogen (N): deprived N (N<sub>0</sub>; 0 mg kg<sup>−1</sup> sand), low nitrogen (LN; 105 mg N kg<sup>−1</sup> sand), medium nitrogen (MN; 210 mg N kg<sup>−1</sup> sand) and high nitrogen (HN; 270 mg N kg<sup>−1</sup> sand) supplementation. Sodium chloride at both doses (MN + NaCl<sub>1</sub> and MN + NaCl<sub>2</sub>) caused considerable decrease in growth (10 and 14 % in FW and 16 and 21 % in DW, respectively), pigments, photosynthetic oxygen evolution, PSII photochemistry and nutrient contents as compared to control (MN + NaCl<sub>0</sub>), while HN supplementation significantly alleviated NaCl toxicity. Under similar treatment, stimulatory effect occurred on sulphur cycle enzymes adenosine triphosphate sulphurylase and o-acetylserine(thiol)lyase and metabolites glutathione and cysteine. NaCl stress induced impact was more severe in LN and N<sub>0</sub> (deprived N) treated seedlings, while HN supplementation protected against damage by up-regulating antioxidant system and components of S cycle. Growth showed negative correlation with Na<sup>+</sup> accumulation. Nitrogen supplementation could be a potential method to minimize NaCl toxicity in eggplants by up-regulating endogenous H<sub>2</sub>S and S metabolites. Further, non-metric-multidimensional scaling provided strong support to represent a spatial model in different variables. This technique is cost effective and covers holistic approach to propose number of agricultural and biotechnological means for sustainable agriculture and human welfare in turn.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"65 ","pages":"Article 103543"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818125000568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates physiological and biochemical adaptation of eggplant (Solanum melongena L.) seedlings to sodium chloride (NaCl0: 0.0 g NaCl kg−1 sand, NaCl1: 0.3 g NaCl kg−1 sand and NaCl2: 0.5 g NaCl kg−1 sand) by varied levels of nitrogen (N): deprived N (N0; 0 mg kg−1 sand), low nitrogen (LN; 105 mg N kg−1 sand), medium nitrogen (MN; 210 mg N kg−1 sand) and high nitrogen (HN; 270 mg N kg−1 sand) supplementation. Sodium chloride at both doses (MN + NaCl1 and MN + NaCl2) caused considerable decrease in growth (10 and 14 % in FW and 16 and 21 % in DW, respectively), pigments, photosynthetic oxygen evolution, PSII photochemistry and nutrient contents as compared to control (MN + NaCl0), while HN supplementation significantly alleviated NaCl toxicity. Under similar treatment, stimulatory effect occurred on sulphur cycle enzymes adenosine triphosphate sulphurylase and o-acetylserine(thiol)lyase and metabolites glutathione and cysteine. NaCl stress induced impact was more severe in LN and N0 (deprived N) treated seedlings, while HN supplementation protected against damage by up-regulating antioxidant system and components of S cycle. Growth showed negative correlation with Na+ accumulation. Nitrogen supplementation could be a potential method to minimize NaCl toxicity in eggplants by up-regulating endogenous H2S and S metabolites. Further, non-metric-multidimensional scaling provided strong support to represent a spatial model in different variables. This technique is cost effective and covers holistic approach to propose number of agricultural and biotechnological means for sustainable agriculture and human welfare in turn.
期刊介绍:
Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.