Algae cultivation in Ultra-high concentration Amino acid based ionic liquids

Yuchao Li , Yuli Kou , Jide Wang , Yansong Zhao
{"title":"Algae cultivation in Ultra-high concentration Amino acid based ionic liquids","authors":"Yuchao Li ,&nbsp;Yuli Kou ,&nbsp;Jide Wang ,&nbsp;Yansong Zhao","doi":"10.1016/j.jil.2025.100138","DOIUrl":null,"url":null,"abstract":"<div><div>Liquid water is an important solvent for carbon-based life, due to its special structure and hydrogen bond engaging the biochemical reactions and energy transformations in the cell. However, the liquid window of water is narrow, within 0–100 °C at 1 atm. When water is partly replaced using ionic liquids (ILs) to transfer energy and nutrition, life activities may happen at a wide temperature range and a wide pressure range on earth, in the solar system and the universe. Aqueous Gly-based ILs were employed as a culture medium for the cultivation of algae. Four different kinds of Gly-based ILs were first synthesized by neutral reaction. Structure of synthesized ILs was confirmed by FT-IR and NMR. Furthermore, effect of Gly-based ILs concentration on algae growth was investigated. Growth rate of algae was tested by microscope and UV–vis according to the absorption of chlorophyll. The Gly-based IL presented higher biological compatibility of algae than previous work. The highest concentration of glycine phosphate suit for algae cultivation is 15 % and the algae could reproduce for 30 days without obvious inhibition. This research is promising work in the context of the cultivation of algae in amino acid IL based culture medium and exploring the life activity restricted zone on earth.</div></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"5 1","pages":"Article 100138"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ionic Liquids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772422025000072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid water is an important solvent for carbon-based life, due to its special structure and hydrogen bond engaging the biochemical reactions and energy transformations in the cell. However, the liquid window of water is narrow, within 0–100 °C at 1 atm. When water is partly replaced using ionic liquids (ILs) to transfer energy and nutrition, life activities may happen at a wide temperature range and a wide pressure range on earth, in the solar system and the universe. Aqueous Gly-based ILs were employed as a culture medium for the cultivation of algae. Four different kinds of Gly-based ILs were first synthesized by neutral reaction. Structure of synthesized ILs was confirmed by FT-IR and NMR. Furthermore, effect of Gly-based ILs concentration on algae growth was investigated. Growth rate of algae was tested by microscope and UV–vis according to the absorption of chlorophyll. The Gly-based IL presented higher biological compatibility of algae than previous work. The highest concentration of glycine phosphate suit for algae cultivation is 15 % and the algae could reproduce for 30 days without obvious inhibition. This research is promising work in the context of the cultivation of algae in amino acid IL based culture medium and exploring the life activity restricted zone on earth.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信