A self-adaptive modified backward forward sweep method: Application to dynamic flow direction changes

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Seyed-Mohammad Razavi , S.Sina Sebtahmadi , Hamid-Reza Momeni , Mahmoud-Reza Haghifam , Miadreza Shafie-khah , Pierluigi Siano
{"title":"A self-adaptive modified backward forward sweep method: Application to dynamic flow direction changes","authors":"Seyed-Mohammad Razavi ,&nbsp;S.Sina Sebtahmadi ,&nbsp;Hamid-Reza Momeni ,&nbsp;Mahmoud-Reza Haghifam ,&nbsp;Miadreza Shafie-khah ,&nbsp;Pierluigi Siano","doi":"10.1016/j.ijepes.2025.110567","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, distribution networks with the presence of new technologies have faced a significant evolving dynamic that challenges the use of traditional power flow calculations specifically backward-forward sweep (BFS). One of the most important effects of this evolving dynamics of distribution networks is related to the increase in the dynamic flow direction changes of the branches. In other words, there is a considerable gap between the practical application of BFS and its basic characteristics, which makes it impossible for practical application because BFS is not compatible with dynamic flow direction changes. Since BFS does not have complex mathematical and modeling concepts, bridging this gap is a meaningful necessity. Hence based on graph theory and the deep node concept, a self-adaptive modified backward-forward sweep (SAMBFS) is proposed so that BFS will be a practical application method for distribution networks. Finally, the application of SAMBFS for dynamic topology changes, P2P trade, several substations, and harmonic calculations as various concepts of the evolving dynamics of distribution networks are investigated.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"166 ","pages":"Article 110567"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525001188","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, distribution networks with the presence of new technologies have faced a significant evolving dynamic that challenges the use of traditional power flow calculations specifically backward-forward sweep (BFS). One of the most important effects of this evolving dynamics of distribution networks is related to the increase in the dynamic flow direction changes of the branches. In other words, there is a considerable gap between the practical application of BFS and its basic characteristics, which makes it impossible for practical application because BFS is not compatible with dynamic flow direction changes. Since BFS does not have complex mathematical and modeling concepts, bridging this gap is a meaningful necessity. Hence based on graph theory and the deep node concept, a self-adaptive modified backward-forward sweep (SAMBFS) is proposed so that BFS will be a practical application method for distribution networks. Finally, the application of SAMBFS for dynamic topology changes, P2P trade, several substations, and harmonic calculations as various concepts of the evolving dynamics of distribution networks are investigated.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信