Investment decisions in a liberalised energy market with generation and hydrogen-based vector coupling storage in Integrated Energy System: A game-theoretic model-based approach
IF 5 2区 工程技术Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"Investment decisions in a liberalised energy market with generation and hydrogen-based vector coupling storage in Integrated Energy System: A game-theoretic model-based approach","authors":"Akhil Joseph , Adib Allahham , Sara Louise Walker","doi":"10.1016/j.ijepes.2025.110518","DOIUrl":null,"url":null,"abstract":"<div><div>Meeting carbon reduction targets and enhancing energy supply flexibility necessitate the integration of natural gas and electricity networks, coupled with increased adoption of renewable energy. Bidirectional hydrogen-based Vector-Coupling Storage (VCS) offers a promising avenue for efficiently utilising surplus power from renewables, linking hydrogen as an energy carrier and storage with the Integrated Energy System (IES). This paper introduces a game-theoretic planning model for IES, encompassing natural gas, electricity, and independent VCS participants in a liberalised market. A game-theoretic model for capacity investment under an oligopolistic market structure in the liberalised energy market context is developed to capture the strategic behaviour of market participants. An annual investment model and an hourly operation simulation model are used to evaluate the value of hydrogen production, coupling components, and vector coupling storage in long-term investment decisions. The model, applied to the North of Tyne region in the UK, employs a scaled-down Future Energy Scenario dataset, reflecting a regional trajectory towards a net-zero emission target by 2050. Simulation results highlight market liberalisation’s crucial role in attracting investments in renewable energy and hydrogen systems. Conversion efficiencies of electrolysers and fuel cells emerge as key profitability determinants, emphasising the significance of achieving at least 50% round trip efficiency for profitable vector coupling storage. The findings quantify the advantages of large-scale VCS investments over Li-ion battery storage.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"166 ","pages":"Article 110518"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525000699","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Meeting carbon reduction targets and enhancing energy supply flexibility necessitate the integration of natural gas and electricity networks, coupled with increased adoption of renewable energy. Bidirectional hydrogen-based Vector-Coupling Storage (VCS) offers a promising avenue for efficiently utilising surplus power from renewables, linking hydrogen as an energy carrier and storage with the Integrated Energy System (IES). This paper introduces a game-theoretic planning model for IES, encompassing natural gas, electricity, and independent VCS participants in a liberalised market. A game-theoretic model for capacity investment under an oligopolistic market structure in the liberalised energy market context is developed to capture the strategic behaviour of market participants. An annual investment model and an hourly operation simulation model are used to evaluate the value of hydrogen production, coupling components, and vector coupling storage in long-term investment decisions. The model, applied to the North of Tyne region in the UK, employs a scaled-down Future Energy Scenario dataset, reflecting a regional trajectory towards a net-zero emission target by 2050. Simulation results highlight market liberalisation’s crucial role in attracting investments in renewable energy and hydrogen systems. Conversion efficiencies of electrolysers and fuel cells emerge as key profitability determinants, emphasising the significance of achieving at least 50% round trip efficiency for profitable vector coupling storage. The findings quantify the advantages of large-scale VCS investments over Li-ion battery storage.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.