Investment decisions in a liberalised energy market with generation and hydrogen-based vector coupling storage in Integrated Energy System: A game-theoretic model-based approach

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Akhil Joseph , Adib Allahham , Sara Louise Walker
{"title":"Investment decisions in a liberalised energy market with generation and hydrogen-based vector coupling storage in Integrated Energy System: A game-theoretic model-based approach","authors":"Akhil Joseph ,&nbsp;Adib Allahham ,&nbsp;Sara Louise Walker","doi":"10.1016/j.ijepes.2025.110518","DOIUrl":null,"url":null,"abstract":"<div><div>Meeting carbon reduction targets and enhancing energy supply flexibility necessitate the integration of natural gas and electricity networks, coupled with increased adoption of renewable energy. Bidirectional hydrogen-based Vector-Coupling Storage (VCS) offers a promising avenue for efficiently utilising surplus power from renewables, linking hydrogen as an energy carrier and storage with the Integrated Energy System (IES). This paper introduces a game-theoretic planning model for IES, encompassing natural gas, electricity, and independent VCS participants in a liberalised market. A game-theoretic model for capacity investment under an oligopolistic market structure in the liberalised energy market context is developed to capture the strategic behaviour of market participants. An annual investment model and an hourly operation simulation model are used to evaluate the value of hydrogen production, coupling components, and vector coupling storage in long-term investment decisions. The model, applied to the North of Tyne region in the UK, employs a scaled-down Future Energy Scenario dataset, reflecting a regional trajectory towards a net-zero emission target by 2050. Simulation results highlight market liberalisation’s crucial role in attracting investments in renewable energy and hydrogen systems. Conversion efficiencies of electrolysers and fuel cells emerge as key profitability determinants, emphasising the significance of achieving at least 50% round trip efficiency for profitable vector coupling storage. The findings quantify the advantages of large-scale VCS investments over Li-ion battery storage.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"166 ","pages":"Article 110518"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525000699","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Meeting carbon reduction targets and enhancing energy supply flexibility necessitate the integration of natural gas and electricity networks, coupled with increased adoption of renewable energy. Bidirectional hydrogen-based Vector-Coupling Storage (VCS) offers a promising avenue for efficiently utilising surplus power from renewables, linking hydrogen as an energy carrier and storage with the Integrated Energy System (IES). This paper introduces a game-theoretic planning model for IES, encompassing natural gas, electricity, and independent VCS participants in a liberalised market. A game-theoretic model for capacity investment under an oligopolistic market structure in the liberalised energy market context is developed to capture the strategic behaviour of market participants. An annual investment model and an hourly operation simulation model are used to evaluate the value of hydrogen production, coupling components, and vector coupling storage in long-term investment decisions. The model, applied to the North of Tyne region in the UK, employs a scaled-down Future Energy Scenario dataset, reflecting a regional trajectory towards a net-zero emission target by 2050. Simulation results highlight market liberalisation’s crucial role in attracting investments in renewable energy and hydrogen systems. Conversion efficiencies of electrolysers and fuel cells emerge as key profitability determinants, emphasising the significance of achieving at least 50% round trip efficiency for profitable vector coupling storage. The findings quantify the advantages of large-scale VCS investments over Li-ion battery storage.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信