Techno-economic analysis of renewable hybrid system microgrids for minimizing grid power outages in residential areas

IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL
Marzieh Salehi, Majid Khanali, Hassan Ghasemi-Mobtaker
{"title":"Techno-economic analysis of renewable hybrid system microgrids for minimizing grid power outages in residential areas","authors":"Marzieh Salehi,&nbsp;Majid Khanali,&nbsp;Hassan Ghasemi-Mobtaker","doi":"10.1016/j.clet.2025.100924","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing frequency of grid blackouts and CO<sub>2</sub> emissions in countries heavily reliant on fossil fuels for their national power grids, such as Iran, has led to reduced power supply reliability and environmental challenges. Effectively utilizing renewable energy to address blackouts is challenging for governments due to the intermittent nature of renewables, peak demand variations, and potential excess generation. Therefore, this study examines the techno-economic feasibility of a hybrid renewable microgrid to mitigate power outages in large-scale residential areas under various outage scenarios. Real demand and capacity shortage data were imported into HOMER software to optimize the grid-connected system using a cycle charging dispatch strategy. Different scenarios were considered, including outages based on existing conditions, during renewable resource peaks, and during demand peaks. Results show that if the government schedules outages during sunny hours to compensate for capacity shortages using photovoltaics, large-scale renewables become more cost-effective. The optimal solution supplies more than 45% of the 591 MW h/day demand with renewables by installing 49.8 MW of PV, 22.5 MW of wind turbines, a 34.5 MW h battery bank, and a 5 MW electrolyzer plant. This solution results in an energy cost of $0.07/kWh and less than 7.7% excess electricity, improving the annual capacity shortage to less than 1% of demand. Additionally, more than 220 tons/year of green hydrogen is produced by utilizing over 10 GW h/year of excess power, justifying the slight cost increase associated with the electrolyzer. These results highlight the success of renewables optimization to supply capacity shortages for policymakers.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"25 ","pages":"Article 100924"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790825000473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing frequency of grid blackouts and CO2 emissions in countries heavily reliant on fossil fuels for their national power grids, such as Iran, has led to reduced power supply reliability and environmental challenges. Effectively utilizing renewable energy to address blackouts is challenging for governments due to the intermittent nature of renewables, peak demand variations, and potential excess generation. Therefore, this study examines the techno-economic feasibility of a hybrid renewable microgrid to mitigate power outages in large-scale residential areas under various outage scenarios. Real demand and capacity shortage data were imported into HOMER software to optimize the grid-connected system using a cycle charging dispatch strategy. Different scenarios were considered, including outages based on existing conditions, during renewable resource peaks, and during demand peaks. Results show that if the government schedules outages during sunny hours to compensate for capacity shortages using photovoltaics, large-scale renewables become more cost-effective. The optimal solution supplies more than 45% of the 591 MW h/day demand with renewables by installing 49.8 MW of PV, 22.5 MW of wind turbines, a 34.5 MW h battery bank, and a 5 MW electrolyzer plant. This solution results in an energy cost of $0.07/kWh and less than 7.7% excess electricity, improving the annual capacity shortage to less than 1% of demand. Additionally, more than 220 tons/year of green hydrogen is produced by utilizing over 10 GW h/year of excess power, justifying the slight cost increase associated with the electrolyzer. These results highlight the success of renewables optimization to supply capacity shortages for policymakers.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cleaner Engineering and Technology
Cleaner Engineering and Technology Engineering-Engineering (miscellaneous)
CiteScore
9.80
自引率
0.00%
发文量
218
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信