Ainsley Svetek , Kristin Morgan , Julie Burland , Neal R. Glaviano
{"title":"Validation of OpenCap on lower extremity kinematics during functional tasks","authors":"Ainsley Svetek , Kristin Morgan , Julie Burland , Neal R. Glaviano","doi":"10.1016/j.jbiomech.2025.112602","DOIUrl":null,"url":null,"abstract":"<div><div>Marker-based motion capture is a fundamental tool in biomechanical analysis, yet comes with major constraints such as time, cost and accessibility. This study aimed to validate the use of OpenCap, a free, markerless motion capture system compared to a marker-based motion capture system to measure lower extremity kinematics during functional tasks. 20 individuals from an athletic population (18 females, 2 males) performed two gait trials (walking, running) and three functional tasks (double leg squat, countermovement jump, jump-landing). Lower extremity peak joint kinematics were collected simultaneously using Vicon and OpenCap to assess the validity of markerless motion capture. Strong agreements were observed in the frontal hip plane joint kinematics across all tasks with root mean squared errors below 6°. Moderate agreements were observed in the sagittal knee plane joint kinematics (4–10°) and there was a weak agreement in the gait trials of the sagittal hip measures (>10°). The results from the study indicate the need for further research on the use of OpenCap in clinical settings. The findings align with previous studies with similar agreements observed in the frontal hip and sagittal knee measures. Validating the use of an open-source motion capture software could provide clinicians and researchers an accessible tool for in depth biomechanical assessments.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"183 ","pages":"Article 112602"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025001137","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Marker-based motion capture is a fundamental tool in biomechanical analysis, yet comes with major constraints such as time, cost and accessibility. This study aimed to validate the use of OpenCap, a free, markerless motion capture system compared to a marker-based motion capture system to measure lower extremity kinematics during functional tasks. 20 individuals from an athletic population (18 females, 2 males) performed two gait trials (walking, running) and three functional tasks (double leg squat, countermovement jump, jump-landing). Lower extremity peak joint kinematics were collected simultaneously using Vicon and OpenCap to assess the validity of markerless motion capture. Strong agreements were observed in the frontal hip plane joint kinematics across all tasks with root mean squared errors below 6°. Moderate agreements were observed in the sagittal knee plane joint kinematics (4–10°) and there was a weak agreement in the gait trials of the sagittal hip measures (>10°). The results from the study indicate the need for further research on the use of OpenCap in clinical settings. The findings align with previous studies with similar agreements observed in the frontal hip and sagittal knee measures. Validating the use of an open-source motion capture software could provide clinicians and researchers an accessible tool for in depth biomechanical assessments.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.