Functional hydrophobic coatings: Insight into mechanisms and industrial applications

IF 6.5 2区 材料科学 Q1 CHEMISTRY, APPLIED
Atif Ur Rahman, Siti Maznah Kabeb, Farah Hanani Zulfkifli
{"title":"Functional hydrophobic coatings: Insight into mechanisms and industrial applications","authors":"Atif Ur Rahman,&nbsp;Siti Maznah Kabeb,&nbsp;Farah Hanani Zulfkifli","doi":"10.1016/j.porgcoat.2025.109187","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrophobic coatings have gained significant attention for their ability to enhance surface protection, corrosion resistance, and self-cleaning properties. However, achieving long-term durability and multifunctionality remains a critical challenge, requiring novel material engineering strategies. While previous studies have explored hydrophobic coatings, a comprehensive understanding of their synergistic nanomaterial interactions and industrial scalability is still lacking. This review fills this gap by providing an in-depth analysis of the fundamental mechanisms governing hydrophobic coatings, including wetting behavior, surface energy manipulation, and adhesion dynamics. A key focus is on the synergistic integration of graphene oxide (GO) and cellulose nanocrystals (CNC), demonstrating their combined effects on mechanical robustness, self-healing capabilities, and electromagnetic interference (EMI) shielding, properties essential for next-generation coatings. Furthermore, we examine emerging fabrication techniques such as liquid-phase polymerization and in-situ chemical precipitation, which optimize coating performance for real-world applications. Beyond material innovation, this review critically evaluates industrial applications across aerospace, marine, construction, and electronics, addressing key barriers to scalability, environmental sustainability, and regulatory compliance. By bridging nanomaterial engineering with functional surface modifications, this work offers a forward-looking perspective on the design of high-performance, sustainable hydrophobic coatings tailored for demanding industrial environments.</div></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":"203 ","pages":"Article 109187"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944025001365","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrophobic coatings have gained significant attention for their ability to enhance surface protection, corrosion resistance, and self-cleaning properties. However, achieving long-term durability and multifunctionality remains a critical challenge, requiring novel material engineering strategies. While previous studies have explored hydrophobic coatings, a comprehensive understanding of their synergistic nanomaterial interactions and industrial scalability is still lacking. This review fills this gap by providing an in-depth analysis of the fundamental mechanisms governing hydrophobic coatings, including wetting behavior, surface energy manipulation, and adhesion dynamics. A key focus is on the synergistic integration of graphene oxide (GO) and cellulose nanocrystals (CNC), demonstrating their combined effects on mechanical robustness, self-healing capabilities, and electromagnetic interference (EMI) shielding, properties essential for next-generation coatings. Furthermore, we examine emerging fabrication techniques such as liquid-phase polymerization and in-situ chemical precipitation, which optimize coating performance for real-world applications. Beyond material innovation, this review critically evaluates industrial applications across aerospace, marine, construction, and electronics, addressing key barriers to scalability, environmental sustainability, and regulatory compliance. By bridging nanomaterial engineering with functional surface modifications, this work offers a forward-looking perspective on the design of high-performance, sustainable hydrophobic coatings tailored for demanding industrial environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Organic Coatings
Progress in Organic Coatings 工程技术-材料科学:膜
CiteScore
11.40
自引率
15.20%
发文量
577
审稿时长
48 days
期刊介绍: The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as: • Chemical, physical and technological properties of organic coatings and related materials • Problems and methods of preparation, manufacture and application of these materials • Performance, testing and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信