N. Elavarasan , Gopal Venkatesh , Govindasami Periyasami , Kiky Corneliasari Sembiring , Jintae Lee , Govindasamy Palanisamy
{"title":"Ameliorative photocatalytic dye degradation performance of ternary Co3O4/MoS2/TiO2 nanocomposite under visible light illumination","authors":"N. Elavarasan , Gopal Venkatesh , Govindasami Periyasami , Kiky Corneliasari Sembiring , Jintae Lee , Govindasamy Palanisamy","doi":"10.1016/j.jtice.2025.106062","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>This research aimed to synthesize a novel ternary nanohybrid material, Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub>/TiO<sub>2</sub> (CMT), to enhance photocatalytic degradation of methylene blue (MB) under light irradiation. Conventional photocatalysts often suffer from limited efficiency, so integrating Co<sub>3</sub>O<sub>4</sub>, MoS<sub>2</sub> and TiO<sub>2</sub> aimed to overcome these challenges by improving charge transfer and separation of electron-hole (e⁻/h⁺) pairs.</div></div><div><h3>Methods</h3><div>The CMT nanocomposites were synthesized using calcination and hydrothermal methods. Various spectroscopic and microscopic techniques were employed to characterize the CMT nanocomposites, and their photocatalytic activity was evaluated by testing MB degradation efficiency. Kinetic studies were also performed to assess the reaction rate, while the material's stability was tested over five degradation cycles.</div></div><div><h3>Significant findings</h3><div>The CMT nanocomposites demonstrated remarkable photocatalytic performance, achieving 94.77 % MB degradation, outperforming other materials. The kinetic rate constant was 0.0181 min⁻<sup>1</sup>, 4.02 times higher than alternative samples. Enhanced charge transfer between Co<sub>3</sub>O<sub>4</sub> and the other components contributed to efficient e⁻/h⁺ pair separation. The photocatalyst remained stable over repeated use, and superoxide radicals (•O<sub>2</sub>⁻) were identified as the dominant reactive species during MB degradation, highlighting the material's efficiency and durability.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"171 ","pages":"Article 106062"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107025001154","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
This research aimed to synthesize a novel ternary nanohybrid material, Co3O4/MoS2/TiO2 (CMT), to enhance photocatalytic degradation of methylene blue (MB) under light irradiation. Conventional photocatalysts often suffer from limited efficiency, so integrating Co3O4, MoS2 and TiO2 aimed to overcome these challenges by improving charge transfer and separation of electron-hole (e⁻/h⁺) pairs.
Methods
The CMT nanocomposites were synthesized using calcination and hydrothermal methods. Various spectroscopic and microscopic techniques were employed to characterize the CMT nanocomposites, and their photocatalytic activity was evaluated by testing MB degradation efficiency. Kinetic studies were also performed to assess the reaction rate, while the material's stability was tested over five degradation cycles.
Significant findings
The CMT nanocomposites demonstrated remarkable photocatalytic performance, achieving 94.77 % MB degradation, outperforming other materials. The kinetic rate constant was 0.0181 min⁻1, 4.02 times higher than alternative samples. Enhanced charge transfer between Co3O4 and the other components contributed to efficient e⁻/h⁺ pair separation. The photocatalyst remained stable over repeated use, and superoxide radicals (•O2⁻) were identified as the dominant reactive species during MB degradation, highlighting the material's efficiency and durability.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.