On the essential norms of Toeplitz operators with symbols in C + H∞ acting on abstract Hardy spaces built upon translation-invariant Banach function spaces
{"title":"On the essential norms of Toeplitz operators with symbols in C + H∞ acting on abstract Hardy spaces built upon translation-invariant Banach function spaces","authors":"Oleksiy Karlovych , Eugene Shargorodsky","doi":"10.1016/j.bulsci.2025.103599","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>X</em> be a translation-invariant Banach function space on the unit circle and let <span><math><mi>H</mi><mo>[</mo><mi>X</mi><mo>]</mo></math></span> be the abstract Hardy space built upon <em>X</em>. We suppose the Riesz projection <em>P</em> is bounded on <em>X</em> and estimate the essential norms <span><math><msub><mrow><mo>‖</mo><mi>T</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>‖</mo></mrow><mrow><mi>B</mi><mo>(</mo><mi>H</mi><mo>[</mo><mi>X</mi><mo>]</mo><mo>)</mo><mo>,</mo><mi>e</mi></mrow></msub></math></span> of Toeplitz operators <span><math><mi>T</mi><mo>(</mo><mi>a</mi><mo>)</mo><mi>f</mi><mo>:</mo><mo>=</mo><mi>P</mi><mo>(</mo><mi>a</mi><mi>f</mi><mo>)</mo></math></span> with <span><math><mi>a</mi><mo>∈</mo><mi>C</mi><mo>+</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>. We prove that in this case<span><span><span><math><msub><mrow><mo>‖</mo><mi>a</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></mrow></msub><mo>≤</mo><msub><mrow><mo>‖</mo><mi>T</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>‖</mo></mrow><mrow><mi>B</mi><mo>(</mo><mi>H</mi><mo>[</mo><mi>X</mi><mo>]</mo><mo>)</mo><mo>,</mo><mi>e</mi></mrow></msub><mo>≤</mo><mi>min</mi><mo></mo><mrow><mo>{</mo><mn>2</mn><mo>,</mo><msub><mrow><mo>‖</mo><mi>P</mi><mo>‖</mo></mrow><mrow><mi>B</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></msub><mo>}</mo></mrow><msub><mrow><mo>‖</mo><mi>a</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></mrow></msub><mo>,</mo></math></span></span></span> extending the results by the second author <span><span>[27]</span></span> for classical Hardy spaces <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>=</mo><mi>H</mi><mo>[</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>]</mo></math></span>, <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span>. In contrast to our previous works <span><span>[27]</span></span> and <span><span>[16]</span></span>, we do not assume that <em>X</em> is reflexive or separable, which complicates the matters, but allows us to include the Hardy-Lorentz spaces <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>=</mo><mi>H</mi><mo>[</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>]</mo></math></span> with <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span> and <span><math><mi>q</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>∞</mo></math></span> into consideration.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"201 ","pages":"Article 103599"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000259","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let X be a translation-invariant Banach function space on the unit circle and let be the abstract Hardy space built upon X. We suppose the Riesz projection P is bounded on X and estimate the essential norms of Toeplitz operators with . We prove that in this case extending the results by the second author [27] for classical Hardy spaces , . In contrast to our previous works [27] and [16], we do not assume that X is reflexive or separable, which complicates the matters, but allows us to include the Hardy-Lorentz spaces with and into consideration.