Multiscale analysis of carbon microfiber reinforcement on fracture behavior of ultra-high-performance concrete

IF 4.7 2区 工程技术 Q1 MECHANICS
J.D. Ríos , H. Cifuentes , G. Ruiz , D.C. González , M.A. Vicente , R.C. Yu , C. Leiva
{"title":"Multiscale analysis of carbon microfiber reinforcement on fracture behavior of ultra-high-performance concrete","authors":"J.D. Ríos ,&nbsp;H. Cifuentes ,&nbsp;G. Ruiz ,&nbsp;D.C. González ,&nbsp;M.A. Vicente ,&nbsp;R.C. Yu ,&nbsp;C. Leiva","doi":"10.1016/j.engfracmech.2025.110998","DOIUrl":null,"url":null,"abstract":"<div><div>This study delves into the intricate world of ultra-high-performance concrete, specifically how its mechanical integrity and fracture resistance are influenced by the incorporation of carbon microfibers of varying lengths. Employing a suite of multiscale analytical techniques, we link the mechanical attributes of concrete to its microstructural composition, with a keen focus on porosity distribution as revealed by advanced X-ray computed tomography and porosimetry assessments. We uncover how the selection of microfiber type affects the concrete’s internal pore landscape, which in turn dictates the material’s fracture behavior. An innovative use of inverse analysis, based on established fracture mechanics, allows us to formulate cohesive laws for the fracture process zone. Our results uncover a direct correlation between the variability in fracture properties and the specific types and amounts of fibers used, providing mix designers with critical insights for customizing concrete formulations to meet precise performance criteria.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"319 ","pages":"Article 110998"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794425001997","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study delves into the intricate world of ultra-high-performance concrete, specifically how its mechanical integrity and fracture resistance are influenced by the incorporation of carbon microfibers of varying lengths. Employing a suite of multiscale analytical techniques, we link the mechanical attributes of concrete to its microstructural composition, with a keen focus on porosity distribution as revealed by advanced X-ray computed tomography and porosimetry assessments. We uncover how the selection of microfiber type affects the concrete’s internal pore landscape, which in turn dictates the material’s fracture behavior. An innovative use of inverse analysis, based on established fracture mechanics, allows us to formulate cohesive laws for the fracture process zone. Our results uncover a direct correlation between the variability in fracture properties and the specific types and amounts of fibers used, providing mix designers with critical insights for customizing concrete formulations to meet precise performance criteria.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信