Machine learning assisted screening of non-metal doped MXenes catalysts for hydrogen evolution reaction

IF 8.3 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Mei Yang , Changxin Wang , Minhui Song , Lu Xie , Ping Qian , Yanjing Su
{"title":"Machine learning assisted screening of non-metal doped MXenes catalysts for hydrogen evolution reaction","authors":"Mei Yang ,&nbsp;Changxin Wang ,&nbsp;Minhui Song ,&nbsp;Lu Xie ,&nbsp;Ping Qian ,&nbsp;Yanjing Su","doi":"10.1016/j.ijhydene.2025.02.469","DOIUrl":null,"url":null,"abstract":"<div><div>Heteroatom doping is a promising strategy to enhance the hydrogen evolution reaction (HER) performance of MXenes. The combination of machine learning (ML) techniques and high-throughput density functional theory (DFT) calculations offers an efficient approach for screening and designing HER electrocatalysts. In this study, we systematically investigated the impact of non-metal (NM) single-atom doping on the HER activity of V<sub>2</sub>C MXenes with different surface functional groups (O and S). Our results reveal how the NM dopants influence the electronic structure, particularly the pz orbital electron redistribution, which subsequently affects the Gibbs free energy of hydrogen adsorption (Δ<em>G</em><sub>H∗</sub>). Additionally, a universal descriptor, integrating both electronic and structural properties, was developed using ML to predict Δ<em>G</em><sub>H∗</sub> and successfully captures the HER catalytic activity trends for a variety of NM dopants in V<sub>2</sub>CO<sub>2</sub> and V<sub>2</sub>CS<sub>2</sub>. Notably, the descriptor can also be extended to doped V<sub>2</sub>CSe<sub>2</sub> and V<sub>2</sub>CTe<sub>2</sub> for HER catalysis. Among the doped MXenes, P–V<sub>2</sub>CTe<sub>2</sub> outperforms platinum (Pt) in terms of Δ<em>G</em><sub>H∗</sub>, demonstrating exceptional potential for practical HER applications. Our study provides a comprehensive framework for the efficient exploration and design of high-performance MXene-based HER catalysts.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"113 ","pages":"Pages 740-748"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925010626","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Heteroatom doping is a promising strategy to enhance the hydrogen evolution reaction (HER) performance of MXenes. The combination of machine learning (ML) techniques and high-throughput density functional theory (DFT) calculations offers an efficient approach for screening and designing HER electrocatalysts. In this study, we systematically investigated the impact of non-metal (NM) single-atom doping on the HER activity of V2C MXenes with different surface functional groups (O and S). Our results reveal how the NM dopants influence the electronic structure, particularly the pz orbital electron redistribution, which subsequently affects the Gibbs free energy of hydrogen adsorption (ΔGH∗). Additionally, a universal descriptor, integrating both electronic and structural properties, was developed using ML to predict ΔGH∗ and successfully captures the HER catalytic activity trends for a variety of NM dopants in V2CO2 and V2CS2. Notably, the descriptor can also be extended to doped V2CSe2 and V2CTe2 for HER catalysis. Among the doped MXenes, P–V2CTe2 outperforms platinum (Pt) in terms of ΔGH∗, demonstrating exceptional potential for practical HER applications. Our study provides a comprehensive framework for the efficient exploration and design of high-performance MXene-based HER catalysts.
机器学习辅助筛选非金属掺杂MXenes析氢催化剂
杂原子掺杂是提高MXenes析氢反应性能的一种很有前途的策略。机器学习(ML)技术和高通量密度泛函理论(DFT)计算的结合为HER电催化剂的筛选和设计提供了一种有效的方法。在这项研究中,我们系统地研究了非金属(NM)单原子掺杂对具有不同表面官能团(O和S)的V2C MXenes的HER活性的影响。我们的结果揭示了NM掺杂如何影响电子结构,特别是pz轨道电子重分布,从而影响氢吸附的吉布斯自由能(ΔGH∗)。此外,利用ML预测ΔGH *并成功捕获了多种纳米掺杂剂在V2CO2和V2CS2中的HER催化活性趋势,开发了一个集成电子和结构性质的通用描述子。值得注意的是,描述符还可以扩展到掺杂的V2CSe2和V2CTe2用于HER催化。在掺杂的MXenes中,P-V2CTe2在ΔGH *方面优于铂(Pt),显示出在实际HER应用中的特殊潜力。我们的研究为高效开发和设计高性能mxene基HER催化剂提供了一个全面的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信